
CICS Transaction Server for z/OS
Version 4 Release 1

Intercommunication Guide 

SC34-7018-02  

���





CICS Transaction Server for z/OS
Version 4 Release 1

Intercommunication Guide 

SC34-7018-02  

���



Note 
Before using this information and the product it supports, read the information in “Notices” on page 409.

This edition applies to Version 4 Release 1 of CICS Transaction Server for z/OS (product number 5655-S97) and to 
all subsequent releases and modifications until otherwise indicated in new editions. 

© Copyright IBM Corporation 1977, 2011. 
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 
with IBM Corp.

 



Contents 

Preface . . . . . . . . . . . . . . . ix 
What this book is about  . . . . . . . . . . ix 
What is not covered by this book  . . . . . . . ix 
Who this book is for . . . . . . . . . . . . x 
What you need to know to understand this book  . . x 
How to use this book  . . . . . . . . . . . x 
How this book is organized  . . . . . . . . . x 
Terminology  . . . . . . . . . . . . . . xi 

Changes in CICS Transaction Server 
for z/OS, Version 4 Release 1 . . . . . xiii 

Part 1. Intercommunication concepts 
and facilities  . . . . . . . . . . . . 1 

Chapter 1. Introduction to CICS 
intercommunication  . . . . . . . . . 3 
Intercommunication methods . . . . . . . . . 3 

Communication between systems  . . . . . . 3 
Multiregion operation  . . . . . . . . . . 4 

Intercommunication facilities  . . . . . . . . . 4 
Function shipping  . . . . . . . . . . . 5 
Asynchronous processing  . . . . . . . . . 5 
Transaction routing  . . . . . . . . . . . 6 
Distributed program link (DPL)  . . . . . . . 6 
Distributed transaction processing (DTP)  . . . . 6 

Using CICS intercommunication . . . . . . . . 7 
Connecting regional centers  . . . . . . . . 9 
Connecting divisions within an organization  . . 10 

Chapter 2. ISC and IPIC 
intercommunications facilities . . . . . 11 
Intercommunication using IP interconnectivity . . . 11 

Intercommunication facilities available using IPIC 12 
Association data and origin data  . . . . . . 12 

Intersystem communication over SNA  . . . . . 17 
Intercommunication facilities available using ISC 17 
Connections between subsystems  . . . . . . 18 
Intersystem sessions  . . . . . . . . . . 20 
Establishing intersystem sessions  . . . . . . 22 

Chapter 3. Multiregion operation . . . . 25 
Intercommunication facilities available using MRO 25 
Cross-system multiregion operation (XCF/MRO)  . . 26 

Benefits of XCF/MRO . . . . . . . . . . 29 
Applications of multiregion operation  . . . . . 29 

Program development . . . . . . . . . . 29 
Time-sharing  . . . . . . . . . . . . . 29 
Reliable database access  . . . . . . . . . 30 
Departmental separation  . . . . . . . . . 30 
Multiprocessor performance  . . . . . . . . 30 
Workload balancing in a sysplex  . . . . . . 30 
Virtual storage constraint relief  . . . . . . . 31 

Conversion from a single-region system  . . . . . 31 

Chapter 4. CICS function shipping . . . 33 
Overview of function shipping  . . . . . . . . 33 
Design considerations for Function Shipping  . . . 34 

File control  . . . . . . . . . . . . . 34 
DL/I  . . . . . . . . . . . . . . . 35 
Temporary storage  . . . . . . . . . . . 35 
Transient data  . . . . . . . . . . . . 35 
Intersystem queuing  . . . . . . . . . . 36 

The mirror transaction and transformer program  . . 37 
ISC function shipping  . . . . . . . . . . 37 
MRO function shipping  . . . . . . . . . 39 
Handling errors and failure of the mirror 
transaction . . . . . . . . . . . . . . 40 

Function shipping examples . . . . . . . . . 41 

Chapter 5. Asynchronous processing 45 
Overview of asynchronous processing  . . . . . 45 
Asynchronous processing methods  . . . . . . 46 
Asynchronous processing using START and 
RETRIEVE commands . . . . . . . . . . . 47 

Starting and canceling remote transactions  . . . 47 
Passing information with the START command 48 
Improving performance of intersystem START 
requests  . . . . . . . . . . . . . . 49 
Including start request delivery in a unit of work 49 
Deferred transmission of START requests with 
NOCHECK option for ISC links  . . . . . . 50 
Intersystem queuing  . . . . . . . . . . 51 
Data retrieval by a started transaction  . . . . 52 
Terminal acquisition by a remotely-initiated CICS 
transaction . . . . . . . . . . . . . . 52 

System programming considerations  . . . . . . 53 
Asynchronous processing examples  . . . . . . 53 

Chapter 6. Introduction to CICS 
dynamic routing . . . . . . . . . . . 59 
What is dynamic routing?  . . . . . . . . . 59 
Two routing models  . . . . . . . . . . . 60 

The “hub” model  . . . . . . . . . . . 60 
The distributed model . . . . . . . . . . 61 

Two routing programs . . . . . . . . . . . 63 

Chapter 7. CICS transaction routing  . . 65 
Overview of transaction routing  . . . . . . . 65 

Initiating transaction routing  . . . . . . . 66 
Terminal-initiated transaction routing . . . . . . 66 

Static transaction routing  . . . . . . . . . 67 
Dynamic transaction routing . . . . . . . . 67 

Traditional routing of transactions started by ATI . . 69 
Shipping terminals for automatic transaction 
initiation  . . . . . . . . . . . . . . 71 
ATI and generic resources  . . . . . . . . 78 

 

© Copyright IBM Corp. 1977, 2011 iii

||
||

||



Routing transactions invoked by START commands 78 
Advantages of the enhanced method  . . . . . 78 
How to route transactions started by 
terminal-related START commands  . . . . . 79 
Non-terminal-related START commands . . . . 84 

Allocation of remote APPC connections  . . . . . 87 
Transaction routing with APPC devices  . . . . 87 
Allocating an alternate facility  . . . . . . . 88 
The system as a terminal  . . . . . . . . . 88 

The relay program  . . . . . . . . . . . . 90 
Basic mapping support (BMS)  . . . . . . . . 90 

BMS message routing to remote terminals and 
operators  . . . . . . . . . . . . . . 91 

Using the routing transaction, CRTE  . . . . . . 91 
System programming for transaction routing  . . . 92 

Intersystem queuing  . . . . . . . . . . 93 

Chapter 8. CICS distributed program 
link  . . . . . . . . . . . . . . . . 95 
Overview of DPL  . . . . . . . . . . . . 95 
Statically routing DPL requests  . . . . . . . . 96 

Using the mirror transaction . . . . . . . . 97 
Using global user exits to redirect DPL requests 98 

Dynamically routing DPL requests . . . . . . . 99 
Which requests can be dynamically routed?  . . 100 
When the dynamic routing program is invoked 100 
Using CICSPlex SM to route requests  . . . . 101 

Daisy-chaining of DPL requests  . . . . . . . 101 
Limitations of DPL server programs . . . . . . 102 
Intersystem queuing  . . . . . . . . . . . 102 
Examples of DPL  . . . . . . . . . . . . 103 

Chapter 9. Distributed transaction 
processing  . . . . . . . . . . . . 105 
Overview of DTP  . . . . . . . . . . . . 105 
Advantages over function shipping and transaction 
routing  . . . . . . . . . . . . . . . 105 
Why distributed transaction processing?  . . . . 106 
What is a conversation and what makes it 
necessary?  . . . . . . . . . . . . . . 107 

Conversation initiation and transaction 
hierarchy . . . . . . . . . . . . . . 107 
Dialog between two transactions  . . . . . . 108 
Control flows and brackets . . . . . . . . 109 
Conversation state and error detection  . . . . 109 
Synchronization  . . . . . . . . . . . 110 

MRO or APPC for DTP? . . . . . . . . . . 111 
APPC mapped or basic? . . . . . . . . . . 112 
EXEC CICS or CPI Communications?  . . . . . 113 

Part 2. Installing and configuring 
intercommunication support  . . . 115 

Chapter 10. Configuring intersystem 
communication  . . . . . . . . . . 117 
Configuring support for communicating over a 
TCP/IP network  . . . . . . . . . . . . 117 
Configuring support for ISC over SNA . . . . . 118 

Chapter 11. Configuring multiregion 
operation  . . . . . . . . . . . . . 119 
Providing support for MRO  . . . . . . . . 119 
Steps after configuring MRO  . . . . . . . . 119 

Chapter 12. Configuring VTAM generic 
resources  . . . . . . . . . . . . . 121 
Prerequisites for VTAM generic resources  . . . . 121 
Planning your CICSplex to use VTAM generic 
resources  . . . . . . . . . . . . . . . 121 

Naming the CICS regions  . . . . . . . . 122 
Defining connections in a generic resource 
environment . . . . . . . . . . . . . . 123 

Defining connections  . . . . . . . . . . 123 
Generating VTAM generic resource support  . . . 125 
Migrating a TOR to a generic resource  . . . . . 126 

Recommended methods . . . . . . . . . 126 
Removing a TOR from a generic resource  . . . . 127 
Moving a TOR to a different generic resource  . . 128 
Setting up inter-sysplex communications between 
generic resources  . . . . . . . . . . . . 128 

Establishing connections between CICS TS for 
z/OS generic resources  . . . . . . . . . 128 

Ending affinities  . . . . . . . . . . . . 133 
When should you end affinities?  . . . . . . 134 
Writing a batch program to end affinities  . . . 134 

Using ATI with generic resources . . . . . . . 137 
Using the ISSUE PASS command . . . . . . . 139 
Rules checklist  . . . . . . . . . . . . . 140 
Dealing with special cases  . . . . . . . . . 141 

Non-autoinstalled terminals and connections 141 
Outbound LU6 connections . . . . . . . . 141 

Part 3. Defining 
intercommunication resources  . . 145 

Chapter 13. How to define 
connections to remote systems  . . . 147 
Introduction to connection definition  . . . . . 147 

The local CICS region name  . . . . . . . 148 
Identifying remote systems . . . . . . . . . 150 
Defining IP interconnectivity (IPIC) connections 150 

Migrating APPC and MRO connections to IPIC 152 
Defining links for multiregion operation  . . . . 161 

Defining an MRO link  . . . . . . . . . 162 
Choosing the access method for MRO  . . . . 163 
Defining compatible MRO nodes . . . . . . 164 

Defining links for use by the external CICS 
interface  . . . . . . . . . . . . . . . 165 

Installing MRO and EXCI link definitions  . . . 166 
Defining APPC connections  . . . . . . . . 167 

Defining the remote APPC system  . . . . . 168 
Defining groups of APPC sessions  . . . . . 169 
Defining compatible CICS APPC nodes . . . . 170 
Automatic installation of APPC links  . . . . 170 
Defining single-session APPC terminals  . . . 171 
The AUTOCONNECT option  . . . . . . . 173 
Using VTAM persistent sessions on APPC links 174 

Defining logical unit type 6.1 links  . . . . . . 175 

 

iv CICS TS for z/OS 4.1: Intercommunication Guide

|
||



Defining CICS-to-IMS LUTYPE6.1 links  . . . . 176 
Defining compatible CICS and IMS nodes . . . 176 
Defining multiple links to an IMS system  . . . 180 

Defining indirect links for transaction routing  . . 182 
Defining indirect links in CICS Transaction 
Server for z/OS  . . . . . . . . . . . 183 
Resource definition for transaction routing using 
indirect links  . . . . . . . . . . . . 185 

Generic and specific applids for XRF  . . . . . 187 

Chapter 14. TCP/IP management and 
control  . . . . . . . . . . . . . . 189 

Chapter 15. Managing APPC 
connections  . . . . . . . . . . . . 193 
General information about managing APPC links 193 
Acquiring a connection  . . . . . . . . . . 194 

Connection status during the acquire process 194 
Effects of the AUTOCONNECT option  . . . . 194 
Effects of the MAXIMUM option  . . . . . . 195 

Controlling sessions with the SET MODENAME 
commands  . . . . . . . . . . . . . . 196 

Command scope and restrictions  . . . . . . 197 
Releasing the connection  . . . . . . . . . 198 

Connection status during the release process 198 
The effects of limited resources  . . . . . . 198 
Making the connection unavailable  . . . . . 199 

Summary of APPC link management  . . . . . 201 
Command scope and restrictions  . . . . . . 201 

Chapter 16. Defining remote 
resources  . . . . . . . . . . . . . 203 
Which remote resources need to be defined?  . . . 203 

A note on daisy-chaining  . . . . . . . . 203 
Local and remote names for resources  . . . . . 204 
Defining remote resources for function shipping 205 

Defining remote files  . . . . . . . . . . 205 
Defining remote DL/I PSBs  . . . . . . . 206 
Defining remote transient data destinations  . . 207 
Defining remote temporary storage queues  . . 207 

Defining remote resources for DPL  . . . . . . 208 
Defining remote server programs . . . . . . 208 
When definitions of remote server programs 
aren't required  . . . . . . . . . . . . 209 

Defining remote resources for asynchronous 
processing  . . . . . . . . . . . . . . 210 

Defining remote transactions  . . . . . . . 210 
Defining remote resources for transaction routing 211 

Defining terminals for transaction routing  . . . 211 
Defining transactions for transaction routing 221 

Defining remote resources for DTP  . . . . . . 227 

Chapter 17. Defining local resources 229 
Defining communication profiles  . . . . . . . 229 

Communication profiles for principal facilities 230 
Default profiles . . . . . . . . . . . . 230 
Modifying the default profiles . . . . . . . 231 

Architected processes . . . . . . . . . . . 232 
Process names  . . . . . . . . . . . . 232 

Modifying the architected process definitions 233 
Selecting required resource definitions for 
installation  . . . . . . . . . . . . . . 233 
Defining intrapartition transient data queues  . . . 235 

Transactions . . . . . . . . . . . . . 235 
Principal facilities  . . . . . . . . . . . 235 

Defining local resources for DPL  . . . . . . . 236 
Mirror transactions  . . . . . . . . . . 237 
Server programs  . . . . . . . . . . . 237 

Part 4. Application programming 
in an intersystem environment  . . 239 

Chapter 18. Application programming 
overview  . . . . . . . . . . . . . 241 
Terminology . . . . . . . . . . . . . . 241 
Problem determination  . . . . . . . . . . 241 

Chapter 19. Application programming 
for CICS function shipping  . . . . . 243 
Introduction to programming for function shipping 243 
File control  . . . . . . . . . . . . . . 243 
DL/I  . . . . . . . . . . . . . . . . 244 
Temporary storage  . . . . . . . . . . . 244 
Transient data  . . . . . . . . . . . . . 244 
Function shipping exceptional conditions  . . . . 244 

Remote system not available  . . . . . . . 245 
Invalid request  . . . . . . . . . . . . 245 
Mirror transaction abend  . . . . . . . . 245 

Chapter 20. Application programming 
for CICS DPL  . . . . . . . . . . . 247 
Introduction to DPL programming  . . . . . . 247 
The client program  . . . . . . . . . . . 247 

Failure of the server program  . . . . . . . 248 
The server program  . . . . . . . . . . . 248 

Permitted commands . . . . . . . . . . 248 
Syncpoints  . . . . . . . . . . . . . 248 

DPL exceptional conditions . . . . . . . . . 248 
Remote system not available  . . . . . . . 249 
Server's work backed out  . . . . . . . . 249 
Multiple links to the same server region  . . . 249 
Mirror transaction abend  . . . . . . . . 250 
Multiple updates to a recoverable resource by 
the same distributed UOW  . . . . . . . . 250 

Chapter 21. Application programming 
for asynchronous processing  . . . . 251 
Starting a transaction on a remote system  . . . . 251 
Exceptional conditions for the START command 251 
Retrieving data associated with a remotely-issued 
start request . . . . . . . . . . . . . . 252 

Chapter 22. Application programming 
for CICS transaction routing  . . . . . 253 
Application programming restrictions  . . . . . 253 

Basic mapping support  . . . . . . . . . 253 
Pseudoconversational transactions  . . . . . 254 

 

Contents v



Reviewing values returned by the EXEC CICS 
ASSIGN command in the application-owning 
region  . . . . . . . . . . . . . . . . 254 

Chapter 23. CICS-to-IMS applications 257 
Designing CICS-to-IMS ISC applications  . . . . 257 

Data formats  . . . . . . . . . . . . 257 
Forms of intersystem communication with IMS 259 

CICS-to-IMS applications—asynchronous 
processing  . . . . . . . . . . . . . . 259 

The START and RETRIEVE interface  . . . . 259 
The asynchronous SEND and RECEIVE 
interface  . . . . . . . . . . . . . . 264 

CICS-to-IMS applications—DTP  . . . . . . . 264 
CICS commands for CICS-to-IMS sessions . . . 264 
Considerations for the front-end transaction  . . 265 
Attaching the remote transaction  . . . . . . 266 
Considerations for the back-end transaction  . . 269 
The conversation  . . . . . . . . . . . 271 
Freeing the session  . . . . . . . . . . 271 
The EXEC interface block (EIB)  . . . . . . 272 
Command sequences for CICS-to-IMS sessions 273 
State diagrams  . . . . . . . . . . . . 274 

Part 5. Performance in an 
intersystem environment  . . . . . 277 

Chapter 24. Intersystem session 
queue management . . . . . . . . . 279 
Overview of session queue management  . . . . 279 
Managing allocate queues  . . . . . . . . . 279 

Using resource definitions to manage your 
queues  . . . . . . . . . . . . . . 279 
Using the NOQUEUE option  . . . . . . . 280 
Using the XISQUE and XZIQUE global user 
exits  . . . . . . . . . . . . . . . 280 

Chapter 25. Efficient deletion of 
shipped terminal definitions  . . . . . 283 
Overview of how shipped terminals are deleted 283 

Selective deletion  . . . . . . . . . . . 283 
The timeout delete mechanism  . . . . . . 284 

Implementing timeout delete  . . . . . . . . 284 
Tuning the performance of timeout delete  . . . . 285 

DSHIPIDL  . . . . . . . . . . . . . 285 
DSHIPINT  . . . . . . . . . . . . . 285 

Part 6. Recovery and restart in an 
intersystem environment  . . . . . 287 

Chapter 26. Recovery and restart in 
interconnected systems . . . . . . . 289 
Terminology . . . . . . . . . . . . . . 289 
Syncpoint exchanges  . . . . . . . . . . . 290 

Syncpoint flows  . . . . . . . . . . . 291 
Recovery functions and interfaces  . . . . . . 293 

Recovery functions  . . . . . . . . . . 293 
Recovery interfaces  . . . . . . . . . . 294 

Initial and cold starts . . . . . . . . . . . 297 
Deciding when a cold start is possible  . . . . 298 
The exchange lognames process  . . . . . . 299 

Managing connection definitions  . . . . . . . 300 
MRO and IPIC connections to CICS TS for z/OS 
systems  . . . . . . . . . . . . . . 300 
APPC parallel-session connections to CICS TS 
for z/OS systems  . . . . . . . . . . . 301 
APPC connections to and from VTAM generic 
resources  . . . . . . . . . . . . . . 301 

Connections that do not fully support shunting 302 
LU6.1 connections . . . . . . . . . . . 302 
APPC connections to non-CICS TS for z/OS 
systems  . . . . . . . . . . . . . . 303 
APPC single-session connections  . . . . . . 303 

APPC connection quiesce processing  . . . . . 304 
Problem determination  . . . . . . . . . . 304 

Messages that report CICS recovery actions  . . 304 
Problem determination examples . . . . . . 308 

Chapter 27. Intercommunication and 
XRF  . . . . . . . . . . . . . . . 317 
MRO sessions  . . . . . . . . . . . . . 317 
LUTYPE6.1 sessions  . . . . . . . . . . . 317 
Single-session APPC devices  . . . . . . . . 317 
Parallel APPC sessions  . . . . . . . . . . 318 
Effect on application programs  . . . . . . . 318 

Chapter 28. Intercommunication and 
VTAM persistent sessions  . . . . . . 319 
Comparison of persistent sessions support and 
XRF  . . . . . . . . . . . . . . . . 319 
Interconnected CICS environment, recovery and 
restart  . . . . . . . . . . . . . . . . 320 

Part 7. Data conversion in an 
intersystem environment  . . . . . 323 

Chapter 29. Where is data converted? 325 
Function shipping and DPL  . . . . . . . . 325 
Distributed transaction processing  . . . . . . 326 
Transaction routing  . . . . . . . . . . . 326 

Chapter 30. Avoiding data conversion 327 

Chapter 31. Types of conversion  . . . 329 

Chapter 32. Character data  . . . . . 331 

Chapter 33. Binary data  . . . . . . . 333 

Chapter 34. CICS-supported 
conversions  . . . . . . . . . . . . 335 
Arabic . . . . . . . . . . . . . . . . 336 
Baltic Rim  . . . . . . . . . . . . . . 337 
Cyrillic  . . . . . . . . . . . . . . . 337 
Devanagari  . . . . . . . . . . . . . . 338 

 

vi CICS TS for z/OS 4.1: Intercommunication Guide



Farsi  . . . . . . . . . . . . . . . . 338 
Greek  . . . . . . . . . . . . . . . . 338 
Hebrew  . . . . . . . . . . . . . . . 339 
Japanese  . . . . . . . . . . . . . . . 340 
Korean  . . . . . . . . . . . . . . . 341 
Lao . . . . . . . . . . . . . . . . . 341 
Latin-1 and Latin-9  . . . . . . . . . . . 342 
Latin-2  . . . . . . . . . . . . . . . 343 
Latin-5  . . . . . . . . . . . . . . . 344 
Simplified Chinese  . . . . . . . . . . . 344 
Thai  . . . . . . . . . . . . . . . . 345 
Traditional Chinese  . . . . . . . . . . . 345 
Urdu  . . . . . . . . . . . . . . . . 346 
Vietnamese  . . . . . . . . . . . . . . 346 
Unicode data  . . . . . . . . . . . . . 347 

Chapter 35. The conversion process 349 
Components . . . . . . . . . . . . . . 349 
Process  . . . . . . . . . . . . . . . 349 
Standard and nonstandard conversion  . . . . . 350 

CICS-only conversion  . . . . . . . . . 350 
User/CICS conversion  . . . . . . . . . 350 
User-only conversion . . . . . . . . . . 351 

Sequence of conversion processing  . . . . . . 351 

Chapter 36. Resource definition to 
enable data conversion  . . . . . . . 353 

Chapter 37. Defining the conversion 
table  . . . . . . . . . . . . . . . 355 
DFHCNV macro types  . . . . . . . . . . 355 

Conversion and key templates . . . . . . . 356 
Defaults for client and server code pages  . . . 356 
Conversion table for initial program verification 
(IVP)  . . . . . . . . . . . . . . . 356 

DFHCNV TYPE=INITIAL  . . . . . . . . . 358 
DFHCNV TYPE=ENTRY  . . . . . . . . . 360 
DFHCNV TYPE=KEY  . . . . . . . . . . 363 
DFHCNV TYPE=SELECT  . . . . . . . . . 363 
DFHCNV TYPE=FIELD  . . . . . . . . . . 364 
DFHCNV TYPE=FINAL . . . . . . . . . . 366 
Hints on coding the macros  . . . . . . . . 366 

Chapter 38. User-defined conversion 
tables . . . . . . . . . . . . . . . 367 
Invalid and undefined DBCS characters  . . . . 370 

Chapter 39. Example macros . . . . . 371 

Chapter 40. Assembling and 
link-editing the conversion programs  . 374 

Chapter 41. The user-replaceable 
conversion program  . . . . . . . . 375 
User-named conversion programs  . . . . . . 375 
Input to DFHUCNV  . . . . . . . . . . . 375 

Parameter list (DFHUVNDS)  . . . . . . . 375 
Conversion and key templates . . . . . . . 378 
Field conversion records . . . . . . . . . 379 

Supplied user-replaceable conversion program  . . 381 
User-replaceable conversion program  . . . . 382 

Part 8. Appendixes  . . . . . . . . 389 

Appendix A. Intercommunication rules 
and restrictions checklist  . . . . . . 391 
Transaction routing  . . . . . . . . . . . 391 
Dynamic routing of DPL requests  . . . . . . 393 
Automatic transaction initiation  . . . . . . . 393 
Basic mapping support  . . . . . . . . . . 393 
Acquiring LUTYPE6.1 sessions  . . . . . . . 393 
Syncpointing  . . . . . . . . . . . . . 394 
Local and remote names . . . . . . . . . . 394 
Master terminal transaction . . . . . . . . . 394 
Installation and operations  . . . . . . . . . 394 
Resource definition  . . . . . . . . . . . 394 
Customization  . . . . . . . . . . . . . 394 
MRO abend codes . . . . . . . . . . . . 395 

Appendix B. CICS mapping to the 
APPC architecture  . . . . . . . . . 397 
Supported option sets  . . . . . . . . . . 397 
CICS implementation of control operator verbs  . . 398 

Control operator verbs  . . . . . . . . . 399 
Return codes for control operator verbs  . . . 405 

CICS deviations from APPC architecture  . . . . 406 
APPC transaction routing deviations from APPC 
architecture  . . . . . . . . . . . . . 407 

Notices  . . . . . . . . . . . . . . 409 
Trademarks  . . . . . . . . . . . . . . 410 

Bibliography . . . . . . . . . . . . 411 
CICS books for CICS Transaction Server for z/OS 411 
CICSPlex SM books for CICS Transaction Server 
for z/OS  . . . . . . . . . . . . . . . 412 
Other CICS publications . . . . . . . . . . 412 
Other IBM publications  . . . . . . . . . . 412 

Accessibility . . . . . . . . . . . . 415 

Index  . . . . . . . . . . . . . . . 417

 

Contents vii



viii CICS TS for z/OS 4.1: Intercommunication Guide



Preface 

What this book is about 
This manual documents intended Programming Interfaces that allow the customer 
to write programs to obtain the services of Version 4 Release 1. 

This manual is about: 
v   Multiregion operation (MRO): communication between CICS® regions in the 

same operating system, or in the same MVS™ sysplex, without the use of IBM® 

Systems Network Architecture (SNA) networking facilities.1 

v   intersystem communication over SNA (ISC over SNA): communication between 
an IBM CICS Transaction Server for z/OS® region and other (CICS or non-CICS) 
systems or terminals that support the logical unit type 6.2 or logical unit type 6.1 
protocols of SNA. Logical unit type 6.2 protocols are also known as Advanced 
Program-to-Program Communication (APPC). The remote systems may or may 
not be in the same MVS sysplex as CICS. 

v   IP interconnectivity (IPIC): communication between an IBM CICS Transaction 
Server for z/OS region and other (CICS or non-CICS) systems or terminals that 
support the Transport Control Protocol/Internet Protocol (TCP/IP). The remote 
systems may or may not be in the same MVS sysplex as CICS.

What is not covered by this book 
The information in this book is predominantly, but not exclusively, about 
communication between CICS Transaction Server for z/OS, Version 4 Release 1 
and other System/390® CICS or IMS™ systems. For supplementary information 
about communication between CICS TS for z/OS, Version 4.1 and non-System/390 
CICS systems, see the CICS Family: Communicating from CICS on System/390 manual. 

Note: In this book, the phrase System/390 is used as a generic term for computers 
of the System/370, System/390, and zSeries® families. 

For an overview of the intercommunication facilities provided on other CICS 
products, see the CICS Family: Interproduct Communication manual . 

For information about accessing CICS programs and transactions from the Internet, 
see the CICS Internet Guide. For information about accessing CICS programs and 
transactions from other non-CICS environments, see the CICS External Interfaces 
Guide . 

For information about CICS support for the CICS Client workstation products, see 
the CICS Family: Communicating from CICS on System/390 manual. 

For information about the intercommunication aspects of using CICS business 
transaction services (BTS), see the CICS Business Transaction Services manual. 

For information about the CICS Front End Programming Interface, see the CICS 
Front End Programming Interface User's Guide. 

1. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs 
and CICS; DCE remote procedure calls to CICS programs. 

 

© Copyright IBM Corp. 1977, 2011 ix



For information about distributed transaction programming, see the CICS 
Distributed Transaction Programming Guide. 

Who this book is for 
This book is for customers involved in the planning and implementation of CICS 
intersystem communication over SNA (ISC over SNA), IP interconnectivity (IPIC), 
or multiregion operation (MRO). 

What you need to know to understand this book 
It is assumed throughout this book that you have experience with single CICS 
systems. The information it contains applies specifically to multiple-system 
environments, and the concepts and facilities of single CICS systems are, in 
general, taken for granted. 

It is also assumed that you understand SNA concepts and terminology. If you plan 
to create an IPIC network, you will need a knowledge of TCP/IP. 

Note: In this book, the term “MVS” refers to those services and functions that are 
provided by the Base Control Program (BCP) of z/OS. The BCP is a base element 
of z/OS. 

How to use this book 
Initially, you should read Part 1 of this book to familiarize yourself with the 
concepts of CICS multiregion operation and intersystem communication. 

Thereafter, you can use the appropriate parts of the book as guidance and 
reference material for your particular task. 

How this book is organized 
This book is organized as follows: 

Intercommunication concepts and facilities contains an introduction to CICS 
intercommunication and describes the facilities that are available. It is intended for 
evaluation and planning purposes. 

Installing intercommunication support describes those aspects of CICS installation 
that apply particularly to intercommunication. It also contains some notes on IMS 
system definition. This part is intended to be used in conjunction with the CICS 
Transaction Server for z/OS Installation Guide and the CICS System Definition Guide. 

Defining intercommunication resources provides guidance for resource definition. 
It tells you how to define links to remote systems, how to define remote resources, 
and how to define the local resources that are required in an intercommunication 
environment. It is intended to be used in conjunction with the CICS Resource 
Definition Guide. 

Application programming in an intersystem environment describes how to write 
application programs that use the CICS intercommunication facilities. It is intended 
to be used in conjunction with the CICS Application Programming Guide and the 
CICS Application Programming Reference. 

 

x CICS TS for z/OS 4.1: Intercommunication Guide



Performance in an intersystem environment describes those aspects of 
performance that apply particularly in the intercommunication environment. It is 
intended to be used in conjunction with the CICS Performance Guide. 

Recovery and restart in an intersystem environment describes those aspects of 
recovery and restart that apply particularly in the intercommunication 
environment. It is intended to be used in conjunction with the CICS Recovery and 
Restart Guide. 

Terminology 
Unless specifically stated otherwise, in this book: 
1.   The term “CICS” means CICS Transaction Server for z/OS, Version 4 Release 1. 

Where other CICS products are meant, they are named explicitly. 
2.   The terms “intersystem communication” and “ISC” are generic names for mean 

intersystem communication over SNA (ISC over SNA) and IP interconnectivity 
(IPIC). Where either ISC over SNA or IPIC is meant, it is named explicitly. 
For an explanation of the two types of ISC, see “Communication between 
systems” on page 3. 

3.   The term “IP connection” means an IP interconnectivity connection. 
4.   The term “MVS” refers to those services and functions that are provided by the 

Base Control Program (BCP) of z/OS. The BCP is a base element of z/OS.

 

Preface xi



xii CICS TS for z/OS 4.1: Intercommunication Guide



Changes in CICS Transaction Server for z/OS, Version 4 
Release 1 

For information about changes that have been made in this release, please refer to 
What's New in the information center, or the following publications: 
v   CICS Transaction Server for z/OS What's New 

v   CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2 

v   CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1 

v   CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3

Any technical changes that are made to the text after release are indicated by a 
vertical bar (|) to the left of each new or changed line of information. 

 

© Copyright IBM Corp. 1977, 2011 xiii



xiv CICS TS for z/OS 4.1: Intercommunication Guide



Part 1. Intercommunication concepts and facilities 

This section describes the basic concepts of CICS intercommunication and the 
various facilities that are provided. 

Chapter 1, “Introduction to CICS intercommunication,” on page 3 defines CICS 
intercommunication, and introduces the two types of intercommunication: 
multiregion operation and intersystem communication. It then describes the basic 
intercommunication facilities that CICS provides. These are: 
v   Function shipping 
v   Asynchronous processing 
v   Transaction routing 
v   Distributed program link (DPL) 
v   Distributed transaction processing (DTP).

The following sections describe each of these concepts in more detail, as follows: 
v   Chapter 3, “Multiregion operation,” on page 25 
v   Chapter 2, “ISC and IPIC intercommunications facilities,” on page 11 
v   Chapter 4, “CICS function shipping,” on page 33 
v   Chapter 5, “Asynchronous processing,” on page 45 
v   Chapter 6, “Introduction to CICS dynamic routing,” on page 59 
v   Chapter 7, “CICS transaction routing,” on page 65 
v   Chapter 8, “CICS distributed program link,” on page 95 
v   Chapter 9, “Distributed transaction processing,” on page 105.

 

© Copyright IBM Corp. 1977, 2011 1



2 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 1. Introduction to CICS intercommunication 

It is assumed that you are familiar with the use of CICS as a single system, with 
associated data resources and a network of terminals. This information is 
concerned with the role of CICS in a multiple-system environment, in which CICS 
can communicate with other systems that have similar communication facilities. 
This sort of communication is called CICS intercommunication. 

CICS intercommunication is communication between a local CICS system and a 
remote system, which might or might not be another CICS system. For information 
about CICS Transaction Server for z/OS's support for the CICS Client workstation 
products, see the CICS Family: Communicating from CICS on zSeries manual. 

For information about accessing CICS programs and transactions from the Internet, 
see the CICS Internet Guide. For information about accessing CICS programs and 
transactions from other non-CICS environments, see the CICS External Interfaces 
Guide. 

This section contains the following topics: 
v   “Intercommunication methods” 
v   “Intercommunication facilities” on page 4 
v   “Using CICS intercommunication” on page 7.

Intercommunication methods 
CICS can communicate with other systems that are in the same operating system 
or sysplex using multiregion operation (MRO). To communicate with other CICS or 
non-CICS systems that are not in the same z/OS image or sysplex, CICS connects 
using either a TCP/IP (IPIC) or SNA (ISC over SNA) protocol. 

Communication between systems 
For communication between CICS and non-CICS systems, or between CICS 
systems that are not in the same operating system or z/OS sysplex, you usually 
require a network access method to provide the necessary communication 
protocols. 

CICS TS for z/OS, Version 4.1 supports two such intercommunication facilities: 
1.   Transport Control Protocol/Internet Protocol (TCP/IP) 
2.   ACF/VTAM, which implements the IBM Systems Network Architecture (SNA)

Communication between systems over TCP/IP is known as IP interconnectivity 
(IPIC). The generic name for communication between systems over SNA is 
intersystem communication (ISC) or intersystem communication (ISC) over SNA. 

IPIC and ISC are used to connect CICS and non-CICS systems or CICS systems 
that are not in the same z/OS image or sysplex. These intercommunication 
facilities can also be used between CICS regions in the same z/OS image or 
sysplex. For example, you might create an ISC connection between two CICS 
regions in the same sysplex if you require two connections between them and there 
was already an MRO connection. 

 

© Copyright IBM Corp. 1977, 2011 3



Related concepts 

“Intercommunication facilities available using IPIC” on page 12
IP interconnectivity (IPIC) allows communication between CICS systems using a 
TCP/IP network. 
“Intercommunication facilities available using ISC” on page 17
Intersystem communication over SNA (ISC over SNA) allows communication 
between CICS and non-CICS systems or CICS systems that are not in the same 
z/OS image or sysplex. These intercommunication facilities can also be used 
between CICS regions in the same z/OS image or sysplex. 
Chapter 2, “ISC and IPIC intercommunications facilities,” on page 11 
CICS provides intercommunications facilities for intersystem communication over 
SNA (ISC over SNA) and IP interconnectivity (IPIC), so that you can communicate 
with external systems.

Multiregion operation 
For CICS-to-CICS communication, CICS provides an interregion communication 
facility that does not require the use of a network access method such as 
ACF/VTAM or TCP/IP. 

This form of communication is called multiregion operation (MRO). MRO can be 
used between CICS regions that reside: 
v   In the same z/OS image 
v   In the same z/OS systems complex (sysplex).

CICS Transaction Server for z/OS can use MRO to communicate with: 
v   Other CICS Transaction Server for z/OS systems 
v   CICS Transaction Server for OS/390® systems

Note: The external CICS interface (EXCI) uses a specialized form of MRO link to 
support: 
v   Communication between MVS batch programs and CICS 
v   DCE remote procedure calls to CICS programs

Intercommunication facilities 
In a multiple-system environment, each participating system can have its own local 
terminals and databases, and can run its local application programs independently 
of other systems in the network. 

A participating system can also establish links to other systems, and gain access to 
remote resources. This mechanism allows resources to be distributed among and 
shared by the participating systems. 

CICS provides these types of facility for communicating with other CICS, IMS, or 
other systems: 
v   Function shipping 
v   Asynchronous processing 
v   Transaction routing 
v   Distributed program link (DPL) 
v   Distributed transaction processing (DTP)

 

4 CICS TS for z/OS 4.1: Intercommunication Guide



A number of intercommunication facilities, which support access to CICS programs 
and transactions from non-CICS environments, are described in Interfaces to CICS 
transactions and programs, in the CICS External Interfaces Guide and in CICS and 
HTTP, in the CICS Internet Guide. 

These communication facilities are not all available for all forms of 
intercommunication. The circumstances under which they can be used are shown 
in Table 1. 

 Table 1. Support for CICS basic intercommunication facilities, when communicating with other CICS, IMS, APPC, or 
TCP/IP systems 

IRC 
Interregion 

communication 

Intersystem communication 
over SNA 

(using ACF/VTAM) 

 Intersystem 
communication 

over TCP/IP 

MRO LUTYPE6.2 (APPC) LUTYPE6.1 IPIC 

Facility 
CICS CICS 

non-CICS 
(for example, CTG) 

CICS IMS CICS 
non-CICS 

(for example, CTG) 

Function 
Shipping 

Yes Yes No Yes No No No 

Asynchronous 
Processing 

Yes Yes No Yes Yes Yes No 

Transaction 
Routing 

Yes Yes No No No Yes Yes 

Distributed 
program link 

Yes Yes No No No Yes Yes 

Distributed 
transaction 
processing 

Yes Yes Yes Yes Yes No No 

  

Function shipping 
Function shipping in CICS allows an application program access a resource owned 
by, or accessible to, another CICS system. Both read and write access are permitted, 
and facilities for exclusive control and recovery and restart are provided. 

The remote resource can be: 
v   A file 
v   A DL/I database 
v   A transient-data queue 
v   A temporary-storage queue.

Application programs that access remote resources can be designed and coded as if 
the resources were owned by the system in which the transaction is to run. During 
execution, CICS ships the request to the appropriate system. 

Function shipping is supported between CICS systems connected by IPIC, ISC over 
SNA, or MRO links. 

Asynchronous processing 
Asynchronous processing allows a CICS transaction to initiate a transaction in a 
remote system and to pass data to it. The remote transaction can then initiate a 
transaction in the local system to receive the reply. 

 

Chapter 1. Introduction to CICS intercommunication 5

||

|



The reply is not necessarily returned to the task that initiated the remote 
transaction, and no direct tie-in between requests and replies is possible (other 
than that provided by user-defined fields in the data). The processing is therefore 
called asynchronous. 

Asynchronous processing is supported between CICS systems connected by MRO, 
or ISC over SNA links. IPIC supports asynchronous processing of EXEC CICS START, 
START CHANNEL, and CANCEL commands, between CICS TS 4.1, or later 
regions. 

Transaction routing 
Transaction routing allows a transaction and an associated terminal to be owned 
by different CICS systems. 

Transaction routing can take the following forms: 
v   A terminal that is owned by one CICS system can run a transaction owned by 

another CICS system. 
v   A transaction that is started by automatic transaction initiation (ATI) can acquire 

a terminal owned by another CICS system. 
v   A transaction that is running in one CICS system can allocate a session to an 

APPC device owned by another CICS system.

Transaction routing is supported between CICS systems connected by MRO, or ISC 
over SNA links. IPIC supports traditional transaction routing of 3270 terminals, 
where the terminal-owning region (TOR) is uniquely identified by an APPLID 
between CICS TS 4.1, or later regions. 

Distributed program link (DPL) 
CICS distributed program link enables a CICS program (the client program) to call 
another CICS program (the server program) in a remote CICS region. 

CICS distributed program link enables a CICS program (the client program) to call 
another CICS program (the server program) in a remote CICS region. Here are 
some of the reasons you might want to design your application to use DPL: 
v   To separate the end-user interface (for example, BMS screen handling) from the 

application business logic, such as accessing and processing data, to enable parts 
of the applications to be ported from host to workstation more readily. 

v   To obtain performance benefits from running programs closer to the resources 
they access, and thus reduce the need for repeated function shipping requests. 

v   In many cases, DPL offers a simple alternative to writing distributed transaction 
processing (DTP) applications.

DPL is supported between CICS systems connected by MRO, or ISC over SNA 
links. IPIC supports the following DPL calls: 
v   Distributed program link (DPL) calls between CICS TS 3.2, or later regions 
v   Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1, 

or later

. 

Distributed transaction processing (DTP) 
The technique of distributing the functions of a transaction over several transaction 
programs within a network is called distributed transaction processing (DTP). 

 

6 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|
|

|
|
|
|



DTP allows a CICS transaction to communicate with a transaction running in 
another system. The transactions are designed and coded specifically to 
communicate with each other, and thereby to use the intersystem link with 
maximum efficiency. 

The communication in DTP is, from the CICS point of view, synchronous, which 
means that it occurs during a single invocation of the CICS transaction and that 
requests and replies between two transactions can be directly associated. This 
contrasts with the asynchronous processing described previously. 

DTP is supported between CICS systems connected by MRO, or ISC over SNA 
links. 

Using CICS intercommunication 
The CICS intercommunication facilities allow you to implement many different 
types of distributed transaction processing. Some examples of typical applications 
are explained. 

Multiregion operation allows two CICS regions to share selected system resources, 
and to present a “single-system” view to terminal operators. At the same time, 
each region can run independently of the other, and can be protected against errors 
in other regions. Various possible applications of MRO are described in Chapter 3, 
“Multiregion operation,” on page 25. 

ISC over SNA, using the ACF/VTAM access method and ACF/NCP/VS network 
control, allows resources to be distributed among and shared by different systems, 
which can be in the same or different physical locations. 

IPIC connections allow you to use a TCP/IP network for intercommunication 
between systems. IPIC provides similar capabilities and qualities of service to those 
provided by ISC over SNA. 

Figure 1 on page 8 shows some typical possibilities. 
 

 

Chapter 1. Introduction to CICS intercommunication 7



Connectingregionalcenters

Connectingdivisions:distributedapplicationsanddata

North

Central

South

HeadquartersFinancial
and
Planning

Warehouse Inventory Work
Orders

Plant

Databasepartitioned
byarea

Sameapplications run
ineachcenter

All terminal userscan
accessapplicationsor
data inall systems

Terminal operatorand
applicationsunawareof
locationofdata

Out-of-townrequests
routed to the
appropriatesystem

Databasepartitioned
by function

Applicationspartitioned
by function

All terminal usersand
applicationscanaccess
data inall systems

Requests fornonlocal
data routed to the
appropriatesystem

Figure 1. Examples of distributed resources (Part 1)

 

8 CICS TS for z/OS 4.1: Intercommunication Guide



Connecting regional centers 
Many users have computer operations set up in each of the major geographical 
areas in which they operate. 

Summaries

Planning

Head Office

Order and

Schedules

Production

Status Report

PlantA Plant B Plant C

Parts

Cross-

Reference

Work

Order

Hierarchical division of data base

Summaries and

central data at

HQ, detail data

at plant

location

Order processing

at HQ: orders

and schedules

transmitted to

plants

Plants send

summaries of

production

status to HQ

(for example,

overnight)

Access to data

from HQ or

Plant possible

if required

Connecting division: hierarchical distribution of data and applications

Low-priority

or backup

applications

and data

High-priority

applications

and data

High-priority

applications

and data

Improved

response through

distributed

processing

  

Figure 2. Examples of distributed resources (Part 2)

 

Chapter 1. Introduction to CICS intercommunication 9



Each system has a database organized toward the activities of that area, with its 
own network of terminals able to inquire on or update the regional database. 
When requests from one region require data from another, without intersystem 
communication, manual procedures have to be used to handle such requests. The 
intersystem communication facilities allow these “out-of-town” requests to be 
automatically handled by providing file access to the database of the appropriate 
region. 

Using CICS function shipping, application programs can be written to be 
independent of the actual location of the data, and able to run in any of the 
regional centers. An example of this type of application is the verification of credit 
against customer accounts. 

Connecting divisions within an organization 
Some users are organized by division, with separate systems, terminals, and 
databases for each division: for example, Engineering, Production, and Warehouse 
divisions. Connecting these divisions to each other and to the headquarters 
location improves access to programs and data, and thus can improve the 
coordination of the enterprise. 

The applications and data can be hierarchically organized, with summary and 
central data at the headquarters site and detail data at plant sites. Alternatively, the 
applications and data can be distributed across the divisional locations, with 
planning and financial data and applications at the headquarters site, 
manufacturing data and applications at the plant site, and inventory data and 
applications at the distribution site. In either case, applications at any site can 
access data from any other site, as necessary, or request applications to be run at a 
remote site (containing the appropriate data) with the replies routed back to the 
requesting site when ready. 

 

10 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 2. ISC and IPIC intercommunications facilities 

CICS provides intercommunications facilities for intersystem communication over 
SNA (ISC over SNA) and IP interconnectivity (IPIC), so that you can communicate 
with external systems. 

This chapter contains the following topics: 
v   “Intersystem communication over SNA” on page 17 
v   “Intercommunication using IP interconnectivity”

Intercommunication using IP interconnectivity 
CICS provides intersystem communication over a Transmission Control 
Protocol/Internet Protocol (TCP/IP) network. This form of communication is called 
IP interconnectivity or IPIC. 

IPIC connection requirements 

You must activate TCP/IP services in each CICS region that you are connecting 
before you create your IPIC connection. 

The IPIC connection consists of two complementary resources, an IPCONN 
definition and a TCPIPSERVICE definition, which you must install in each CICS 
region that you are connecting. The IPCONN definition is the CICS resource that 
represents the outbound TCP/IP communication link and the term IPCONN is 
commonly used to refer to an IPIC connection. The inbound attributes of the 
connection are specified by the TCPIPSERVICE definition. The TCPIPSERVICE 
resource is named in the TCPIPSERVICE option of the IPCONN definition. 

Figure 3 shows the relationship between IPCONN and TCPIPSERVICE definitions. 
 

IPCONN(CICB)

IPCONN(CICA)

TCPIPSERVICE(TSA)

TCPIPSERVICE(TSB)

hosta.example.com hostb.example.com

CICSA CICSB

APPLID(CICSB)
HOST(hostb.example.com) PORT(B)
SENDCOUNT
TCPIPSERVICE(TSA)
RECEIVECOUNT

APPLID(CICSA)
HOST(hosta.example.com) PORT(A)
SENDCOUNT
TCPIPSERVICE(TSB)
RECEIVECOUNT

PORT(A)
PROTOCOL(IPIC)

PORT(B)
PROTOCOL(IPIC)

PORT
B

PORT
A

  

Figure 3. Related IPCONN and TCPIPSERVICE definitions

 

© Copyright IBM Corp. 1977, 2011 11

|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|



Synchronization levels 

IPIC connections support synchronization level 2; that is, they support full CICS 
sync pointing, including rollback. 

Socket capacity 

For CICS TS 4.1 to CICS TS 4.1 systems, up to two sockets are available for IPIC 
communications. For CICS TS 4.1 to CICS TS 3.2 systems, only one socket is 
available for IPIC communications. If you lose one or more of the sockets in use by 
an IPCONN, for example, because of a network error, all the sockets are lost and 
the IPCONN connection is released. 

TCP/IP connection balancing, for example, TCP/IP port sharing, is not supported 
using IPIC and can produce unexpected results when attempting to acquire an 
IPIC connection. 
Related tasks 

“Defining IP interconnectivity (IPIC) connections” on page 150
You can define TCP/IP connections so that you can communicate with a remote 
CICS region by using IP interconnectivity (IPIC).

Intercommunication facilities available using IPIC 
IP interconnectivity (IPIC) allows communication between CICS systems using a 
TCP/IP network. 
v   IPIC supports these intercommunication functions and releases: 

–   Distributed program link (DPL) calls between CICS TS 3.2, or later regions 
–   Distributed program link (DPL) calls between CICS TS and TXSeries Version 

7.1, or later 
–   Asynchronous processing of EXEC CICS START, START CHANNEL, and 

CANCEL commands, between CICS TS 4.1, or later regions 
–   Traditional transaction routing of 3270 terminals, where the terminal-owning 

region (TOR) is uniquely identified by an APPLID between CICS TS 4.1, or 
later regions 

–   ECI requests from CICS Transaction Gateway Version 7.1 or later
Related concepts 

“Intercommunication facilities” on page 4 
In a multiple-system environment, each participating system can have its own local 
terminals and databases, and can run its local application programs independently 
of other systems in the network.

Association data and origin data 
Association data is a set of information that describes the environment in which 
nonsystem tasks run and the way that nonsystem tasks are attached in a region. 
Origin data is created by a nonsystem task that is started when an external request 
arrives at a CICSplex. 

Association data characteristics 

Some association data can be specific to the task itself; for example, the task ID, the 
user ID relating to the task, and the principal facility of the task. Other association 
data provides details about the origin of the task. 

 

12 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|
|
|

|

|
|

|

|

|
|

|
|

|
|
|

|

|

|
|
|
|

|

|
|
|
|

|

|
|
|



You can use the CICS Explorer™, WUI, INQUIRE ASSOCIATION and INQUIRE 
ASSOCIATION LIST commands to view association data. The INQUIRE ASSOCIATION 
LIST command returns a list of tasks, in the local region, that have matching 
correlation information in their association data. 

You can also use association data to correlate TCP/IP connections with the CICS 
regions and transactions using them. Association data uses socket application data 
(ApplData) for the socket that received the request to start the task. In TCP/IP, the 
ApplData information is available on the Netstat ALL/-A, ALLConn/-a and 
COnn/-c reports and can be searched with the APPLD/-G filter. See IP System 
Administrator's Commands for additional information on using ApplData with 
Netstat. The ApplData information is available in the SMF 119 TCP Connection 
Termination record. See IP Configuration Reference for additional information. The 
ApplData information is available through the Network Management Interface. See 
IP Programmer's Guide and Reference for more information. 

Origin data characteristics 

The origin descriptor record (ODR) is part of the association data that holds origin 
data information. Origin data is stored in a separate section of the association data 
and describes where the task was started (the point of origin). 

Origin data might be the result of a transaction ID being scheduled from a VTAM® 

terminal, from a browser, or from another external device. The task that CICS 
attaches is at a new point of origin and CICS populates the fields in the ODR of 
the task with information relating specifically to that task. If an application 
program running under the task causes another task to be attached in the same 
region, the origin data is inherited by the new task. If a new task is attached 
remotely over an IPIC connection, the remote task inherits the same origin data. 
Note that origin data is not propagated over APPC or MRO connections, and a 
task attached over either connection is considered to be at a new point of origin. 

If you are using CICS Transaction Gateway, the point of origin can be outside CICS 
(in CICS TG) and the point of origin information is populated to the ODR when 
the task is started at the boundary of the CICSplex. For example, CICS TG records 
context information about the point of origin for the JCA resource adapter, and this 
information is passed to CICS as part of the origin data. 

The origin data fields in the association data all have names that begin with “OD”. 
All fields are populated by CICS, except the user correlator data field, 
USERCORRDATA, which is a 64-byte area that can be populated by the 
XAPADMGR global user exit. The exit can be called only from a task that is 
running at a point of origin in a CICSplex. With origin data, you can track 
distributed transactions between regions that use IPIC connections to share work 
between them. You can use the WUI to search for all the tasks that are active in a 
CICSplex that share a common set of origin data, or you can search on a subset of 
the fields. 

Origin data allows you to track and audit complex systems by providing a 
transaction group ID, TRNGRPID, which is the unique key that represents the 
origin data. With the TRNGRPID, you can track where transactions are spawned, 
when they do not share the same unit of work (for example, when you use a 
START command) to indicate which parts of the transaction have a common 
source. CICS determines the source of information, rather than the target location 
of the information. Also, with origin data you append your own identifying token 
to the work request. 

 

Chapter 2. ISC and IPIC intercommunications facilities 13

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



Origin data is written in monitoring records and stored in CICSPlex® SM history 
records for offline analysis. Origin data is non-recoverable information, which 
means that the data does not appear with any tasks that are attached because of a 
transaction restart, or with any tasks that are rebuilt from the system log when a 
region is restarted. 

Flow of association data and origin data between CICS tasks and 
components 

Figure 4 on page 15 shows how association and origin data is collected and used in 
CICS: 
v   When a new task is attached, association data is created. If the task has been 

created in response to a message arriving across a TCP/IP network, additional 
information that CICS has obtained from the internet protocol stack �1� is also 
stored. 

v   The origin data for the new task is stored in a separate section of the association 
data �2� and describes where the task was started (the point of origin). 

v   If a global user exit has been called by the task �3�, the exit can obtain 
information from other sources using the XPI �4� to return to the task �5�, 
where it is included in the origin data. 

v   If the task issues a DPL request to a remote region, the origin data is added to 
the DPL request that is sent over TCP/IP to the remote CICS region. When the 
DPL request arrives at the remote region, another new task is started to process 
the request. CICS creates unique association data for this task, however CICS 
detects origin data, and passes the origin data to the mirror task when it is 
attached to service the DPL request �6�. 

v   During task attach processing, the origin data is stored as part of the association 
data of the new task, �7�, and the global user exit is not called. 

v   If monitoring is enabled, origin data is written to the monitoring record for the 
task �8� and if CICSPlex SM is configured, the data is stored in history records 
�9�. 

v   You can use the CICSPlex SM WUI to retrieve information stored in the 
association data of running tasks �10�; for example, you can create a search to 
find the tasks in a CICSplex that have matching origin data. 

v   You can also use CICSPlex SM to perform offline analysis of origin data 
information that is stored in history records �11�; for example, to understand 
how distributed transactions have used a TCP/IP network.

 

 

14 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|



Examples of origin data creation 
A VTAM terminal example and a Web example help you to understand how origin 
data is stored and passed to other tasks. 

VTAM terminal example 

A task is started in a region when a transaction identifier is entered at a VTAM 
terminal. The origin data is stored at the point of origin and is passed to any other 
tasks that are started in the same region as a consequence of the initial task: 
1.   The task is at the boundary of the CICSplex and at a point of origin. CICS 

populates the origin data (VTAM terminal information) from other fields in its 
association data when the task is attached. 

2.   If the task issues a DPL request that is serviced in another region using an IPIC 
connection, the origin data is passed with the DPL request. 

3.   The remote region that receives the message extracts the origin data and passes 
the data to the mirror transaction, which is attached to service the DPL request.

In this example, the mirror transaction contains the following information in its 
association data: 

  

Figure 4. Flow of association data and origin data in CICS

 

Chapter 2. ISC and IPIC intercommunications facilities 15

|

|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|



v   The values that describe the mirror transaction itself; for example, task ID and 
principal facility of the IPIC connection 

v   The same origin data that the terminal task that scheduled the DPL created and 
stored in its own association data

In this example, the associated data exit, XAPADMGR, can run when the terminal 
task is attached, but the exit is not called when the mirror task is initialized. 

Web example 

Figure 5 on page 17 shows an HTTP request that has been passed through a 
TCP/IP network and arrives for CICS processing. The origin data is stored at the 
point of origin and is passed to any other tasks that are started in the same region 
as a consequence of the initial task. In this example, the origin data is populated 
from two different tasks: 
1.   The HTTP request is passed by a CSOL system task to CICS. 
2.   The request is processed by a CWXN task. CWXN is at a point of origin and 

CICS populates the origin data (HTTP request information) from other fields in 
its association data when the CWXN task is attached. 

3.   A new CWBA task is attached and CWBA inherits the ODR from CWXN. 
Alternatively, the XAPADMGR global user exit is called from CWBA, and the 
exit provides the origin data. CWBA and CWXN might run under different 
user IDs, but the user ID (userid2) used by the CWBA task is more useful for 
audit purposes. As a result, the user ID used by the CWBA task is stored in the 
origin data of CWBA. 

4.   An application program that is running under the control of the CWBA task 
issues a DPL request that is serviced over an IPIC connection. The origin data 
is passed unchanged with the DPL message to the CISR system task. 

5.   The remote region that receives the DPL message extracts the origin data and 
passes the origin data to a mirror transaction (CSMI) and the mirror transaction 
is attached to service the DPL request. 

6.   The program running under the mirror transaction issues a START command. 
The origin data is inherited by the task (USER) that is attached to service the 
START request.

Figure 5 on page 17 shows how origin data is created when CICS processes an 
HTTP request and how the origin data is inherited by other tasks that are attached 
to fulfill the request. 
 

 

16 CICS TS for z/OS 4.1: Intercommunication Guide

|
|

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|



Intersystem communication over SNA 
CICS provides intercommunications facilities for intersystem communication over 
SNA (ISC over SNA). ISC over SNA implements the IBM Systems Network 
Architecture (SNA), which defines data formats and communication protocols for 
communication between systems in a multiple-system environment. You can use 
SNA between CICS and any other system that supports APPC or LUTYPE6.1 
communications. SNA supports all the base CICS intercommunication functions. 

Before reading these topics, you must be familiar with the general concepts and 
terminology of SNA. 

This chapter contains the following topics: 
v   “Connections between subsystems” on page 18 
v   “Intersystem sessions” on page 20 
v   “Establishing intersystem sessions” on page 22.

Intercommunication facilities available using ISC 
Intersystem communication over SNA (ISC over SNA) allows communication 
between CICS and non-CICS systems or CICS systems that are not in the same 

  

Figure 5. Creation and movement of origin data when an HTTP request is processed

 

Chapter 2. ISC and IPIC intercommunications facilities 17

|

|
|
||

|

|
|



z/OS image or sysplex. These intercommunication facilities can also be used 
between CICS regions in the same z/OS image or sysplex. 

These facilities are available for intercommunication using ISC: 
v   Function shipping 
v   Asynchronous processing 
v   Transaction routing 
v   Distributed program link 
v   Distributed transaction processing

ISC can be used between CICS and any other system that supports VTAM 
Advanced Program-to-Program Communication (APPC) or Logical Unit Type 6.1 
(LUTYPE6.1) communications. For example, ISC over SNA connections can exist 
between CICS regions running in different z/OS sysplexes or on different 
operating system platforms, between CICS and any APPC device, and between 
CICS and IMS. 

CICS Transaction Server for z/OS can use ISC over SNA to communicate with 
these systems: 
v   Other CICS Transaction Server for z/OS systems 
v   CICS Transaction Server for VSE 
v   CICS Transaction Server for iSeries® 

v   IMS Version 9.1 or later 
v   Any system that supports Advanced Program-to-Program Communication 

(APPC) protocols (LU6.2)

Connections between subsystems 
Subsystems can be connected for intersystem communication in three basic forms. 
v   ISC in a single host operating system 
v   ISC between physically adjacent operating systems 
v   ISC between physically remote operating systems. 

A possible configuration is shown in Figure 6 on page 19. 
 

 

18 CICS TS for z/OS 4.1: Intercommunication Guide

|
|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|

|
|



Single operating system 

ISC in a single operating system (intrahost ISC) is possible through the 
application-to-application facilities of ACF/VTAM. In Figure 6, these facilities can 
be used to communicate between CICSA and CICSB, between CICSC and IMSA, 
and between CICSD and CICSE. 

In an MVS system, you can use intrahost ISC for communication between two or 
more CICS systems (although MRO is a more efficient alternative) or between, for 
example, a CICS system and an IMS system. 

From the CICS point of view, intrahost ISC is the same as ISC between systems in 
different VTAM domains. 

Physically adjacent operating systems 

You can configure an IBM 3725 with a multichannel adapter that permits you to 
connect two VTAM domains (for example, VTAM1 and VTAM2 in Figure 6) 
through a single ACF/NCP/VS. This configuration might be useful for 
communication between these systems: 
v   A production system and a local but separate test system 
v   Two production systems with differing characteristics or requirements

Direct channel-to-channel communication is available between systems that have 
ACF/VTAM installed. 

Remote operating systems 

The most typical configuration for intersystem communication is between remote 
operating systems. For example, in Figure 6, CICSD and CICSE can be connected 
to CICSA, CICSB, and CICSC in this way. Each participating system is 
appropriately configured for its particular location, using MVS or Virtual Storage 
Extended (VSE) CICS or IMS, and one of the ACF access methods such as 
ACF/VTAM. 

Any APPC ACF/NCP ACF/NCP
(LU6.2)
System 3725 3725

ACF/VTAM ACF/VTAM ACF/VTAM
(VTAM1) (VTAM2) (VTAM3)

CICS TS z/OS

CICS TS z/OS

CICS TS
OS/390

CICS TS
VSE/ESA

(CICSA) (CICSC) (CICSD)
... ... ...

IMS CICS/VSE
(CICSB) (IMSA) (CICSE)

z/OS OS/390 VSE

  

Figure 6. A possible configuration for intercommunicating systems

 

Chapter 2. ISC and IPIC intercommunications facilities 19



For a list of the CICS and non-CICS systems to which CICS Transaction Server for 
z/OS can connect to using ISC, see “Communication between systems” on page 3. 
For detailed information about using ISC to connect CICS Transaction Server for 
z/OS to other CICS products, see the CICS Family: Communicating from CICS on 
zSeries manual. 

Intersystem sessions 
CICS uses ACF/VTAM to establish, or bind, logical-unit-to-logical-unit (LU-LU) 
sessions with remote systems. Being a logical connection, an LU-LU session is 
independent of the physical route between the two systems. A single logical 
connection can carry multiple independent sessions. Such sessions are called 
parallel sessions. 

CICS supports two types of sessions, both of which are defined by IBM Systems 
Network Architecture: 
v   LUTYPE6.1 sessions 
v   LUTYPE6.2 generally called APPC sessions.

The characteristics of LUTYPE6 sessions are described in the Systems Network 
Architecture book Sessions Between Logical Units. 

You must not have more than one APPC connection installed at the same time 
between an LU-LU pair. You must not have an APPC and an LUTYPE6.1 
connection installed at the same time between an LU-LU pair. 

LUTYPE6.1 
LUTYPE6.1 is the forerunner of LUTYPE6.2 (APPC). 

LUTYPE6.1 sessions are supported by both CICS and IMS, so can be used for 
CICS-to-IMS communication. (For CICS-to-CICS communication, LUTYPE6.2 is the 
preferred protocol.) 

LUTYPE6.2 (APPC) 
The general term used for the LUTYPE6.2 protocol is Advanced 
Program-to-Program Communication (APPC). In addition to enabling data 
communication between transaction-processing systems, the APPC architecture 
defines subsets that enable device-level products (APPC terminals) to communicate 
with host-level products and also with each other. You can use APPC sessions for 
CICS-to-CICS communication and for communication between CICS and other 
APPC systems or terminals. 

Here is an overview of some of the principal characteristics of the APPC 
architecture. 

Protocol boundary 

The APPC protocol boundary is a generic interface between transactions and the 
SNA network. It is defined by formatted functions, called verbs, and protocols for 
using the verbs. Details of this SNA protocol boundary are given in the Systems 
Network Architecture publication Transaction Programmer's Reference Manual for LU 
Type 6.2. 

CICS provides a command-level language that maps to the protocol boundary and 
enables you to write application programs that hold APPC conversations. 

 

20 CICS TS for z/OS 4.1: Intercommunication Guide



Alternatively, you can use the Common Programming Interface Communications (CPI 
Communications) of the Systems Application Architecture® (SAA) environment. 

Two types of APPC conversation are defined: 

Mapped  
In mapped conversations, the data passed to and received from the APPC 
application program interface is user data. The user is not concerned with 
the internal data formats demanded by the architecture. 

Basic  In basic conversations, the data passed to and received from the APPC 
application program interface is prefixed with a header, called a GDS 
header. The user is responsible for building and interpreting this header. 
Basic conversations are used principally for communication with 
device-level products that do not support mapped conversations, and 
which possibly do not have an application programming interface open to 
the user.

Synchronization levels 

The APPC architecture provides three levels of synchronization. In CICS, these 
levels are known as Levels 0, 1, and 2. In SNA terms, these correspond to NONE, 
CONFIRM, and SYNCPOINT, as follows: 

Level 0 (NONE) 
This level is for use when communicating with systems or devices that do not 
support synchronization points, or when no synchronization is required. 

Level 1 (CONFIRM) 
This level allows conversing transactions to exchange private synchronization 
requests. CICS built-in synchronization does not occur at this level. 

Level 2 (SYNCPOINT) 
This level is the equivalent of full CICS syncpointing, including rollback. Level 
1 synchronization requests can also be used.

EXEC CICS commands and CPI Communications support all three levels. 

Program initialization parameter data 

When a transaction initiates a remote transaction connected by an APPC session, it 
can send data to be received by the attached transaction. This data, called program 
initialization parameters (PIP), is formatted into one or more variable-length 
subfields according to the SNA architected rules. CPI Communications does not 
support PIP. 

LU services manager 

Multisession APPC connections use the LU services manager, the software 
component responsible for negotiating session binds, session activation and 
deactivation, resynchronization, and error handling. It requires two special sessions 
with the remote LU; these are called the SNASVCMG sessions. When these sessions 
are bound, the two sides of the LU-LU connection can communicate with each 
other, even if the connection is 'not available for allocation' for users. 

A single-session APPC connection has no SNASVCMG sessions. For this reason, its 
function is limited. It cannot, for example, support level-2 synchronization. 

 

Chapter 2. ISC and IPIC intercommunications facilities 21



Class of service 

The CICS implementation of APPC includes support for “class of service” 
selection. 

Class of service (COS) is an ACF/VTAM facility that allows sessions between a 
pair of logical units to have different characteristics. 
v   Alternate routing: virtual routes for a given COS can be assigned to different 

physical paths (explicit routes). 
v   Mixed traffic: different kinds of traffic can be assigned to the same virtual route 

and, by selecting appropriate transmission priorities, undue session interference 
can be prevented. 

v   Trunking: explicit routes can use parallel links between specific nodes.

In particular, sessions can take different virtual routes, and thus use different 
physical links; or, the sessions can be of high or low priority to suit the traffic 
carried on them. 

In CICS, APPC sessions are specified in groups called modesets, each of which is 
assigned a modename. The modename must be the name of a VTAM LOGMODE 
entry (also called a modegroup), which can specify the class of service required for 
the session group. For more information see ACF/VTAM LOGMODE table entries 
for CICS. 

Limited resources 

For efficient use of some network resources (for example, switched lines), SNA 
allows for such resources to be defined in the network as limited resources. When a 
session is bound, VTAM indicates to CICS whether the bind is over a limited 
resource. When a task using a session across a limited resource frees the session, 
CICS unbinds that session if no other task requires it. 

Both single- and multi-session connections can use limited resources. For a 
multi-session connection, CICS does not unbind LU service-manager sessions until 
all modegroups in the connection have performed initial “change number of 
sessions” (CNOS) exchange. When CICS unbinds a session, CICS tries to balance 
the contention winners and losers. This balancing might result in CICS resetting an 
unbound session to be neither a winner or a loser. 

Establishing intersystem sessions 
Before traffic can flow on an intersystem session, the session must be established, 
or bound. 

CICS can be either the primary (BIND sender) or secondary (BIND receiver) in an 
intersystem session, and can be either the contention winner or the contention 
loser. The contention winner in an LU-LU session is the LU that is permitted to 
begin a conversation at any time. The contention loser is the LU that must use an 
SNA BID command (LUTYPE6.1) or LUSTATUS command (APPC) to request 
permission to begin a conversation. 

You can specify the number of contention-winning and contention-losing sessions 
required on a link to a particular remote system. 

For LUTYPE6.1 sessions, CICS always binds as a contention loser. 

 

22 CICS TS for z/OS 4.1: Intercommunication Guide



For APPC links, the number of contention-winning sessions is specified when the 
link is defined. See “Defining APPC connections” on page 167. The 
contention-winning sessions are normally bound by CICS, but CICS also accepts 
bind requests from the remote system for these sessions. 

Normally, the contention-losing sessions are bound by the remote system. 
However, CICS can also bind contention-losing sessions if the remote system is 
cannot send bind requests. 

A single session to an APPC terminal is normally defined as the contention winner, 
and is bound by CICS, but CICS can accept a negotiated bind in which the 
contention winner is changed to the loser. 

Session initiation occurs in one of the following ways: 
v    By CICS during CICS initialization for sessions for which 

AUTOCONNECT(YES) or AUTOCONNECT(ALL) has been specified. See 
Chapter 13, “How to define connections to remote systems,” on page 147. 

v   By a request from the CICS master terminal operator. 
v   By the remote system with which CICS is to communicate. 
v   By CICS when an application explicitly or implicitly requests the use of an 

intersystem session and the request can be satisfied only by binding a previously 
unbound session.

 

Chapter 2. ISC and IPIC intercommunications facilities 23



24 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 3. Multiregion operation 

By using CICS multiregion operation (MRO), CICS systems that are running in the 
same MVS image, or in the same MVS sysplex, can communicate with each other. 

This chapter contains the following topics: 
v   “Intercommunication facilities available using MRO” 
v   “Cross-system multiregion operation (XCF/MRO)” on page 26 
v   “Applications of multiregion operation” on page 29 
v   “Conversion from a single-region system” on page 31.

Intercommunication facilities available using MRO 
Multiregion operation (MRO) allows CICS systems that are running in the same 
MVS image or in the same MVS sysplex to communicate with each other. MRO 
does not support communication between a CICS system and a non-CICS system, 
such as IMS. 

MRO provides these intercommunication facilities: 
v   Function shipping 
v   Asynchronous processing 
v   Transaction routing 
v   Distributed program link 
v   Distributed transaction processing

MRO has some restrictions for distributed transaction processing. The external 
CICS interface (EXCI) uses a special form of MRO link to support these types of 
communication: 
v   Communication between MVS batch programs and CICS 
v   DCE remote procedure calls to CICS programs.

MRO does not need ACF/VTAM and SNA networking facilities. CICS support for 
region-to-region communication is called interregion communication (IRC). You can 
implement IRC in three ways: 
v   Through support in CICS terminal control management modules and by use of a 

CICS-supplied interregion program (DFHIRP) loaded in the link pack area (LPA) 
of MVS. DFHIRP is started by a type 3 supervisor call (SVC). For convenience, 
this implementation of multiregion operation is called MRO(IRC), because you 
select it by specifying ACCESSMETHOD(IRC) on the CONNECTION definition. 

v   By MVS cross-memory (XM) services, which you can select as an alternative to 
the CICS type 3 SVC mechanism. Here, DFHIRP is used only to open and close 
the interregion links. 

v   By the cross-system coupling facility (XCF) of IBM MVS/ESA. XCF is required 
for MRO links between CICS regions in different MVS images of an MVS 
sysplex. It is selected dynamically by CICS for such links, if available.

CICS regions linked by MRO can be at different release levels. If an MVS image 
contains different releases of CICS, all using MRO to communicate with each other 

 

© Copyright IBM Corp. 1977, 2011 25



or XCF/MRO to communicate with regions in other images in the sysplex, the 
DFHIRP module in the MVS LPA must be from the most current CICS release in 
the image, or higher. 

Cross-system multiregion operation (XCF/MRO) 
The cross-system coupling facility (XCF) is part of the MVS/ESA base control 
program, providing high-performance communication links between MVS images 
that are linked in a sysplex (systems complex) by channel-to-channel links, 
channels, or coupling facility links. 

IRC provides an XCF access method that makes it unnecessary to use VTAM to 
communicate between MVS images within the same MVS sysplex. 

Each CICS region is assigned to an XCF group when it logs on to IRC, even if it is 
not currently connected to any regions in other MVS images. You specify the name 
of the XCF group on the XCFGROUP system initialization parameter. If you do not 
specify XCFGROUP, the region becomes a member of the default CICS XCF group, 
DFHIR000. 

When members of a CICS XCF group that are in different MVS images 
communicate, CICS selects the XCF access method dynamically, overriding the 
access method specified on the connection resource definition. By means of MVS 
cross-system coupling facility, MRO can function between MVS images in a sysplex 
environment, supporting all the usual MRO operations. 

XCF/MRO does not support accessing shared data tables across MVS images. 
Shared access to a data table, across two or more CICS regions, requires the 
regions to be in the same MVS image. To access a data table in a different MVS 
image, you can use function shipping. 

Each CICS region can be a member of only one XCF group, which it joins when it 
logs on to IRC. The maximum size of an XCF group is limited by the MVS 
MAXMEMBER parameter, with an absolute limit of 2047 members. If this limit is a 
problem because, for example, it limits the number of CICS regions you can have 
in your sysplex, you can create multiple XCF groups, each containing a different 
set of regions. You might, for example, have one XCF group for production regions 
and another for development and test regions. If you do need to have multiple 
XCF groups, follow these recommendations: 
v   You put your production regions in a different XCF group from your 

development and test regions. 
v   You do not create more XCF groups than you need; two, separated as described, 

may be sufficient. 
v   You try not to move regions between XCF groups. 
v   You try not to add or remove regions from existing XCF groups.

Note that CICS regions can use MRO or XCF/MRO to communicate only with 
regions in the same XCF group. Members of different XCF groups cannot 
communicate using MRO or XCF/MRO, even if they are in the same MVS image. 

CICS regions linked by XCF/MRO can be at different release levels; see 
“Multiregion operation” on page 4. Depending on the versions of CICS installed in 
the MVS images participating in XCF/MRO, the versions of DFHIRP installed in 
the link pack areas of the MVS images can be different. If a single MVS image 
contains different releases of CICS, all using XCF/MRO to communicate with 

 

26 CICS TS for z/OS 4.1: Intercommunication Guide



regions in other images in the sysplex, the DFHIRP module in the MVS LPA must 
be that from the most current CICS release in the image, or higher. However, note 
that the CICS TS for z/OS, Version 4.1 version of DFHIRP (required for multiple 
XCF group support) can be used only on z/OS Version 1.7 or later. For full details 
of software and hardware requirements for XCF/MRO, see Installation 
requirements for XCF/MRO. 

Figure 7 is an example of the use of XCF/MRO in a sysplex environment. This 
example, has only one CICS XCF group, DFHIR000. The members of DFHIR000 
can communicate using XCF/MRO links across the two MVS images. 

The MRO links between CICS1 and CICS2 and between CICS3 and CICS4 use 
either the IRC or XM access methods, as defined for the link. The MRO links 
between CICS regions on MVS1 and the CICS regions on MVS2 use the XCF 
method, which is selected by CICS dynamically. 

In each MVS, the DFHIRP module in the LPA must be at the level of the highest 
CICS TS for z/OS release in the image. 

 

Figure 8 on page 28 is a slightly more complex example. This example has two 
CICS XCF groups, DFHIR000 and DFHIR001. The members of each XCF group can 
communicate across the MVS images by means of XCF/MRO links. 

MVS1 z/OS

DBCTL/IMS
regions

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

MVS2 z/OS

CICS4

XCF group:
DFHIR000

DBCTL/IMS
regions

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS3

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

SYSPLEX1

SYSPLEXTIMER

XCF
COUPLE

DATA
SET(S)

XCF signaling paths
DFHIRPDFHIRP

CICS1 CICS2

XCF group:
DFHIR000

  

Figure 7. A sysplex (SYSPLEX1) containing a single CICS XCF group. 

 

Chapter 3. Multiregion operation 27



To support multiple CICS XCF groups, both MVS images must be z/OS Version 
1.7 or later and must use the CICS TS for z/OS, Version 3.2 or later version of 
DFHIRP. Although z/OS has supported multiple XCF groups since Version 1.6, 
CICS TS for z/OS, Version 3.2, which is required to join an XCF group other than 
DFHIR000 requires z/OS Version 1.7 or later. 

 

Note: 
v   The members of the DFHIR000 XCF group in MVS1 (CICS 1, CICS 3, and CICS 

4) use XCF/MRO, which is selected by CICS dynamically, to communicate with 
the member of the DFHIR000 XCF group in MVS2 (CICS 5). Similarly, CICS 2 in 
MVS1 uses XCF/MRO to communicate with CICS 6 in MVS 2; they are both 
members of the DFHIR001 group. 

v   CICS 1, CICS 3, and CICS 4 cannot use XCF/MRO to communicate with CICS 6, 
because CICS 6 is in a different XCF group. Similarly, CICS 2 cannot use 
XCF/MRO to communicate with CICS 5. 

v   Because they are in the same MVS image and the same XCF group, CICS 1, 
CICS 3, and CICS 4 can communicate with each other using either the 
MRO(IRC) or MRO(XM) access method, as defined for the links. 

v   CICS 5 cannot use any form of MRO to communicate with CICS 6, even though 
they are in the same MVS image, because they are in different XCF groups. 
Similarly, CICS 2 cannot use any form of MRO to communicate with CICS 1, 
CICS 3, or CICS 4.

MVS1 z/OS

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

MVS2 z/OS

CICS 6

XCF group:
DFHIR000

XCF group:
DFHIR001

DBCTL/IMS
regions

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS 5

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

SYSPLEX1

SYSPLEXTIMER

XCF
COUPLE

DATA
SET(S)

XCF signaling paths
DFHIRPDFHIRP

XCF group:
DFHIR000

XCF group:
DFHIR000

XCF group:
DFHIR000

CICS 1

CICS 3

XCF group:
DFHIR001

CICS 2

CICS 4

  

Figure 8. A sysplex (SYSPLEX1) containing two CICS XCF groups

 

28 CICS TS for z/OS 4.1: Intercommunication Guide



Benefits of XCF/MRO 
Cross-system MRO using XCF links offers a number of benefits. 
v   A low communication overhead between MVS images, providing much better 

performance than using ISC links to communicate between MVS systems. 
XCF/MRO thus improves the efficiency of transaction routing, function 
shipping, asynchronous processing, and distributed program link across a 
sysplex. You can also use XCF/MRO for distributed transaction processing, 
provided that the LUTYPE6.1 protocol is adequate for your purpose. 

v   Easier connection resource definition than for ISC links, with no VTAM tables to 
update. 

v   Good availability, by having alternative processors and systems ready to 
continue the workload of a failed MVS or a failed CICS. 

v   Easier transfer of CICS systems between MVS images. The more straightforward 
connection resource definition of MRO, with no VTAM tables to update, makes 
it easier to move CICS regions from one MVS to another. You no longer need to 
change the connection definitions from CICS MRO to CICS ISC (which can be 
done only if the CICS startup on the new MVS is a warm or cold start). 

v   Improved price and performance, by coupling low-cost, rack-mounted, 
air-cooled processors in an HPCS environment. 

v   Growth in small increments. 
v   Organizational benefits. Because regions in different XCF groups cannot 

communicate over MRO or XCF/MRO, each group of regions is effectively 
isolated from the others. This isolation can be useful if, for example, you want to 
prevent, possibly, access accidentally to production regions from development or 
test regions.

Applications of multiregion operation 
Multiregion operation provides an environment for a number of typical 
applications. 

Program development 
You can isolate the testing of newly written programs from production work by 
running a separate CICS region for testing. This isolation permits the reliability 
and availability of the production system to be maintained during the 
development of new applications, because the production system continues even if 
the test system terminates abnormally. 

You can start and stop the test system as required, without interrupting production 
work. During the cutover of the new programs into production, terminal operators 
can run transactions in the test system from their regular production terminals, and 
the new programs can access the full resources of the production system. 

Time-sharing 
If one CICS system performs compute-bound work, such as APL or ICCF, as well 
as regular DB/DC work, the response time for the DB/DC user can be unduly 
long. You can improve the response time by running the compute-bound 
applications in a lower-priority address space and the DB/DC applications in 
another address space. 

Transaction routing allows any terminal to access either CICS system without the 
operator being aware of the two different systems. 

 

Chapter 3. Multiregion operation 29



Reliable database access 
You can use CICS storage protection and transaction isolation to guard against 
unreliable applications that might otherwise stop the system or disable other 
applications. 

However, you might use MRO to extend the level of protection. 

For example, you might define two CICS regions, one that owns applications that 
you have identified as unreliable, and the other that owns the reliable applications 
and the database. If you run a smaller number of applications in the 
database-owning region, you have a more reliable region. However, the 
cross-region traffic is greater, so performance can be degraded. You must balance 
performance against reliability. 

You can take this application of MRO to its limit by having no user applications at 
all in the database-owning region. The online performance degradation might be a 
worthwhile trade-off against the elapsed time necessary to restart a CICS region 
that owns a very large database. 

Departmental separation 
MRO enables you to create a CICSplex in which the various departments of an 
organization have their own CICS systems. 

Each can start and end its own system as it requires. At the same time, each can 
have access to other departments' data, with access controlled by the system 
programmer. A department can run a transaction on another department's system, 
again subject to the control of the system programmer. Terminals need not be 
allocated to departments, because, with transaction routing, any terminal can run a 
transaction on any system. 

Multiprocessor performance 
Using MRO, you can take advantage of a multiprocessor by linking several CICS 
systems into a CICSplex, and allowing any terminal to access the transactions and 
data resources of any of the systems. 

The system programmer can assign transactions and data resources to any of the 
connected systems to get optimum performance. Transaction routing presents the 
terminal user with a single system image; the user is not aware that more than one 
CICS system is present. 

Transaction routing is described in Chapter 7, “CICS transaction routing,” on page 
65. 

Workload balancing in a sysplex 
In a sysplex, you can use MRO and XCF/MRO links to create a CICSplex 
consisting of sets of functionally equivalent terminal-owning regions (TORs) and 
application-owning regions (AORs). 

You can use these products and functions to perform workload balancing: 
v   The VTAM generic resource function 
v   Dynamic transaction routing 
v   Dynamic routing of DPL requests 
v   CICSPlex System Manager (CICSPlex SM) 

 

30 CICS TS for z/OS 4.1: Intercommunication Guide



v   The MVS workload manager

A VTAM application program such as CICS can be known to VTAM by a generic 
resource name, as well as by the specific network name defined on its VTAM 
APPL definition statement. A number of CICS regions can use the same generic 
resource name. 

A terminal user, who wants to start a session with a CICSplex that has several 
terminal-owning regions uses the generic resource name in the logon request. 
Using the generic resource name, VTAM can select one of the CICS TORs to be the 
target for that session. For this mechanism to operate, the TORs must all register to 
VTAM under the same generic resource name. VTAM can perform workload 
balancing of the terminal sessions across the available terminal-owning regions. 

The terminal-owning regions can in turn perform workload balancing using 
dynamic transaction routing. Application-owning regions can route DPL requests 
dynamically. The CICSPlex SM product can help you to manage dynamic routing 
across a CICSplex. 

For further information about VTAM generic resources see the VTAM Version 4 
Release 2 Release Guide. 
v   “Dynamically routing DPL requests” on page 99 
v   “Dynamic transaction routing” on page 67 
v   CICSPlex System Manager Managing Workloads. 
v   CICS Performance Guide

Virtual storage constraint relief 
In some large CICS systems, the amount of virtual storage available can become a 
limiting factor. 

In such cases, you might be able to relieve the virtual storage problem by splitting 
the system into two or more separate systems with shared resources. You can use 
all the facilities of MRO to help maintain a single-system image for users. 

If you are using DL/I databases and want to split your system to avoid virtual 
storage constraints, consider using DBCTL, rather than CICS function shipping, to 
share the databases between your CICS address spaces. 

Conversion from a single-region system 
Usually, you can convert existing single-region CICS systems to multiregion CICS 
systems with little or no reprogramming. 

CICS function shipping allows operators of terminals owned by an existing 
command-level application to continue accessing existing data resources after 
either the application or the resource has been transferred to another CICS region. 
Applications that use function shipping must follow the rules given in Chapter 19, 
“Application programming for CICS function shipping,” on page 243. To conform 
to these rules, you might have to modify programs written for single-region CICS 
systems. 

CICS transaction routing allows operators of terminals owned by one CICS region 
to run transactions in a connected CICS region. One use of this facility is to allow 
applications to continue to use function that has been discontinued in the current 

 

Chapter 3. Multiregion operation 31



release of CICS. Such coexistence considerations are described in CICS Transaction 
Server for z/OS Upgrading from CICS TS Version 3.2 . In addition, the restrictions that 
apply are given in Chapter 22, “Application programming for CICS transaction 
routing,” on page 253. 

You must define an MRO link between the two regions and to provide local and 
remote definitions of the shared resources. 

 

32 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 4. CICS function shipping 

You can use CICS function shipping to write CICS application programs without 
regard to the location of the requested resources. They use file control commands, 
temporary-storage commands, and other functions in the same way. 

This chapter contains the following topics: 
v   “Overview of function shipping” 
v   “Design considerations for Function Shipping” on page 34 
v   “The mirror transaction and transformer program” on page 37 
v   “Function shipping examples” on page 41.

Overview of function shipping 
You can use CICS function shipping to enable CICS application programs to 
perform the following tasks. 
v   Access CICS files owned by other CICS systems by shipping file control 

requests. 
v   Access DL/I databases managed by or accessible to other CICS systems by 

shipping requests for DL/I functions. 
v   Transfer data to or from transient data and temporary storage queues in other 

CICS systems by shipping requests for transient data and temporary storage 
functions. 

v   Initiate transactions in other CICS systems, or other non-CICS systems that 
implement SNA LU Type 6 protocols, such as IMS, by shipping interval control 
START requests. This form of communication is described in Chapter 5, 
“Asynchronous processing,” on page 45.

You can write applications without regard to the location of the requested 
resources. They use file control commands, temporary-storage commands, and 
other functions in the same way. Entries in the CICS resource definition tables 
allow the system programmer to specify that the named resource is not on the 
local (or requesting) system but on a remote (or owning) system. 

An illustration of a shipped file control request is given in Figure 9 on page 34. In 
this figure, a transaction running in CICA issues a file control READ command 
against a file called NAMES. The file control table indicates that this file is owned 
by a remote CICS system called CICB. CICS changes the READ request into a 
suitable transmission format and then ships it to CICB for execution. 

In CICB, the request is passed to a special transaction known as the mirror 
transaction. The mirror transaction re-creates the original request, issues it on CICB, 
and returns the acquired data to CICA. 

CICS recovery and restart enables resources in remote systems to be updated, and 
ensures that, when the requesting application program reaches a synchronization 
point, any mirror transactions that are updating protected resources also take a 
synchronization point, so that changes to protected resources in remote and local 
systems are consistent. The CICS master terminal operator is notified of any 
failures in this process, so that suitable corrective action can be taken. This action 

 

© Copyright IBM Corp. 1977, 2011 33



can be taken manually or by user-written code. 
   

Design considerations for Function Shipping 
User application programs can run in a CICS intercommunication environment and 
use the intercommunication facilities without being aware of the location of the file 
or other resource being accessed. The location of the resource is specified in the 
resource definition. 

Guidance on identifying and defining remote resources is given in Chapter 16, 
“Defining remote resources,” on page 203. 

The resource definition can also specify the name of the resource as it is known on 
the remote system, if it is different from the name by which it is known locally. 
When the resource is requested by its local name, CICS substitutes the remote 
name before sending the request. Substituting the remote name is useful when a 
particular resource exists with the same name on more than one system but 
contains data specific to the system on which it is located. 

This technique might limit program independence. Application programs can also 
name remote systems explicitly on commands that can be function-shipped, by 
using the SYSID option. If you specify this option, the request is routed directly to 
the named system, and the resource definition tables on the local system are not 
used. You can specify the local system in the SYSID option, so that the decision 
whether to access a local resource or a remote one can be taken at execution time. 

File control 
Function shipping allows access to VSAM or BDAM files located on a remote CICS 
system. 

Note the following points:- 
v   INQUIRE FILE, INQUIRE DSNAME, SET FILE, and SET DSNAME are not 

supported. 
v   Both read-only and update requests are allowed, and the files can be defined as 

protected on their own system. 
v   Updates to remote protected files are not committed until the application 

program issues a sync point request or terminates successfully. 

CICA CICB
DEFINE DEFINE
FILE(NAMES) FILE(NAMES)
REMOTESYSTEM(CICB)

.
EXEC CICS READ CICS mirror
FILE(NAMES) ISC or MRO transaction

TERMINAL INTO(XXXX) (issues READ
. session command and
. passes data
. back)

  

Figure 9. Function shipping

 

34 CICS TS for z/OS 4.1: Intercommunication Guide



v   Linked updates of local and remote files can be performed in the same unit of 
work, even if the remote files are located on more than one connected CICS 
system.

Important:  

Take care when designing systems in which remote file requests using physical 
record identifier values are employed, such as VSAM RBA, BDAM, or files with 
keys not embedded in the record. You must ensure that all application programs in 
remote systems have access to the correct values following addition of records or 
reorganization of these types of file. 

DL/I 
Function shipping allows a CICS transaction to access IMS Database Manager (IMS 
DM) databases associated with a remote CICS system, or DL/I databases 
associated with a remote CICS Transaction Server for VSE system. 

See Chapter 1, “Introduction to CICS intercommunication,” on page 3 for a list of 
systems with which CICS Transaction Server for z/OS, Version 4 Release 1 can 
communicate. 

The IMS database associated with a remote CICS Transaction Server for z/OS 
system can be a local database owned by the remote system or a database accessed 
using IMS database control (DBCTL). To the CICS system that is doing the function 
shipping, this database is remote. 

As with file control, updates to remote DL/I databases are not committed until the 
application reaches a sync point. With IMS DM, it is not possible to schedule more 
than one program specification block (PSB) for each unit of work, even when the 
PSBs are defined to be on different remote systems. Therefore linked DL/I updates 
on different systems cannot be made in a single unit of work. 

The PSB directory list (PDIR) is used to define a PSB as being on a remote system. 
The remote system owns the database and the associated program communication 
block (PCB) definitions. 

Temporary storage 
Function shipping enables application programs to send data and retrieve data 
from temporary-storage queues located on remote systems. 

You specify a temporary-storage queue as remote by an entry in the local 
temporary-storage table (TST). If the queue is to be protected, you must also define 
its queue name (or remote name) must also be defined as recoverable in the TST of 
the remote system. 

Transient data 
An application program can access intrapartition or extrapartition transient-data 
queues on remote systems. 

The definition of the queue in the requesting system defines it as being on the 
remote system. The definition of the queue in the remote system specifies its 
recoverability attributes, and whether it has a trigger level and associated terminal. 
You can define extrapartition queues in the owning system as having records of 
fixed or variable length. 

 

Chapter 4. CICS function shipping 35



You can extend many of the uses currently made of transient-data and 
temporary-storage queues in a single CICS system can be extended to an 
interconnected processor system environment. For example, you can create a queue 
of records in a system for processing overnight. Queues also provide another 
means of handling requests from other systems while freeing the terminal for other 
requests. The reply can be returned to the terminal when it is ready, and delivered 
to the operator when there is a lull in entering transactions. 

If a transient-data queue has an associated trigger level transaction, you must 
define the named transaction to execute in the system owning the queue; it cannot 
be defined as remote. If a terminal is associated with the transaction, it can be 
connected to another CICS system and used through the transaction routing facility 
of CICS. 

By means of the remote naming capability, a program can send data to the CICS 
service destinations, such as CSMT, in both local and remote systems. 

Intersystem queuing 
Performance problems can occur when function shipping requests waiting for free 
sessions are queued in the issuing region. 

Requests that are to be function shipped to a resource-owning region might be 
queued if all bound contention winner sessions are busy, so that no sessions are 
immediately available. If the resource-owning region is unresponsive, the queue 
can become so long that the performance of the issuing region is severely 
impaired. Further, if the issuing region is an application-owning region, its 
impaired performance can spread back to the terminal-owning region. 

Note: “Contention winner” is the terminology used for APPC connections. On 
MRO and LUTYPE6.1 connections, the SEND sessions (defined in the session 
definitions) are used for ALLOCATE requests; when all SEND sessions are in use, 
queuing starts. 

The symptoms of this impaired performance are as follows: 
v   The system reaches its maximum transactions (MXT) limit, because many tasks 

have requests queued. 
v   The system becomes short-on-storage. 

In either case, CICS cannot start any new work. 

CICS provides two methods of preventing these problems: 
v   The QUEUELIMIT and MAXQTIME options of CONNECTION definitions. You 

can use these options to limit the number of requests that can be queued against 
particular remote regions, and the time that requests must wait for sessions on 
unresponsive connections. 

v   Two global user exits, XZIQUE and XISCONA. Your XZIQUE or XISCONA exit 
program is invoked if no contention winner session is immediately available. 
The exit program can instruct CICS to queue the request or to return SYSIDERR 
to the application program. Its decision can be based on statistics accessible from 
the user exit parameter list. For programming information about writing 
XZIQUE and XISCONA exit programs, refer to Intersystem communication 
program exits XISCONA and XISLCLQ, in the CICS Customization Guide. For 
information on the statistics records that are passed to your exit program, refer 
to Introduction to CICS statistics , in the CICS Performance Guide. 

 

36 CICS TS for z/OS 4.1: Intercommunication Guide



Note: You are recommended to use the XZIQUE exit, rather than XISCONA. 
XZIQUE provides better function, and is of more general use than XISCONA: it 
is driven for function shipping, DPL, transaction routing, and distributed 
transaction processing requests, whereas XISCONA is driven only for function 
shipping and DPL. If you enable both exits, XZIQUE and XISCONA can both be 
driven for function shipping and DPL requests, which is not recommended. 
If you already have an XISCONA exit program, you might be able to modify it 
for use at the XZIQUE exit point. 

For further information about controlling intersystem queues, see Chapter 24, 
“Intersystem session queue management,” on page 279. 

The mirror transaction and transformer program 
CICS supplies a number of mirror transactions, some of which correspond to 
“architected processes”. 

Details of the supplied mirror transactions are given in Chapter 17, “Defining local 
resources,” on page 229 . Here, they are referred to generally as the mirror 
transaction and have the transaction identifier 'CSM*'. 

The following description of the mirror transaction and the transformer program is 
generally applicable to both ISC and MRO function shipping. However, the way 
that the mirror transaction works under MRO has some differences, and a different 
transformer program is used. These differences are described in “MRO function 
shipping” on page 39 . 

ISC function shipping 
The mirror transaction runs as a normal CICS transaction and uses the CICS 
terminal control program to communicate with the requesting system. 

In the requesting system (CICA in Figure 10 on page 38), the command-level EXEC 
interface program (for all except DL/I requests) determines that the requested 
resource is on another system (CICB in the example). It therefore calls the 
function-shipping transformer program to transform the request into a form 
suitable for transmission (in the example, line 2 indicates this call). The EXEC 
interface program then calls on the intercommunication component to send the 
transformed request to the appropriate connected system (line 3). For DL/I 
requests, part of this function is handled by CICS DL/I interface modules. For 
guidance about DL/I request processing, see IMS Database Control (DBCTL), in 
the CICS IMS Database Control Guide . 

The intercommunication component uses the CICS terminal control program to 
send the request to the mirror transaction. The first request to a particular remote 
system on behalf of a transaction causes the communication component in the local 
system to precede the formatted request with the appropriate mirror transaction 
identifier, in order to attach this transaction in the remote system. Thereafter, it 
keeps track of whether the mirror transaction stops, and reinvokes it as required. 
 

 

Chapter 4. CICS function shipping 37



The sequence of events in Figure 10 is as follows:- 
v   The mirror transaction uses the function-shipping transformer program, 

DFHXFP, to decode the formatted request (line 4 in Figure 10). The mirror then 
runs the corresponding command. On completion of the command, the mirror 
transaction uses the transformer program to construct a formatted reply (line 5). 
The mirror transaction returns this formatted reply to the requesting system, 
CICA (line 6). On CICA, the reply is decoded, again using the transformer 
program (line 7), and used to complete the original request made by the 
application program (line 8). 

v   If the mirror transaction is not required to update any protected resources, and 
no previous request updated a protected resource in its system, the mirror 
transaction stops after sending its reply. However, if the request causes the 
mirror transaction to change or update a protected resource, or if the request is 
for any DL/I program specification block (PSB), it does not stop until the 
requesting application program issues a synchronization point (sync point) 
request or ends successfully. If a browse is in progress, the mirror transaction 
does not end until the browse is complete. 

v   When the application program issues a sync point request, or ends successfully, 
the intercommunication component sends a message to the mirror transaction 
that causes it also to issue a sync point request and stop. The successful sync 
point by the mirror transaction is indicated in a response sent back to the 
requesting system, which then completes its sync point processing, thereby 
committing changes to any protected resources. If DL/I requests have been 
received from another system, CICS issues a DL/I TERM request as a part of the 
processing resulting from a sync point request made by the application program 
and carried out by the mirror transaction. 

v   The application program can access protected or unprotected resources in any 
order, and is not affected by the location of protected resources. They might all 
be in remote systems, for example. When the application program accesses 
resources in more than one remote system, the intercommunication component 
invokes a mirror transaction in each system to run requests for the application 
program. Each mirror transaction follows the above rules for ending, and when 
the application program reaches a syncpoint, the intercommunication component 

CICA CICB
DEFINE FILE(FA) DEFINE FILE(FA) ...

REMOTESYSTEM(CICB) ... ...

Transaction Mirror
AAAA: transaction

... CSM*
EXEC CICS READ

FILE(FA)...
...

(1)
(3) (4)

EXEC interface (5)
program DFHEIP (6)

(8)

(2)
(7)

Transformer Transformer
program DFHXFP program DFHXFP

  

Figure 10. The transformer program and the mirror in function shipping

 

38 CICS TS for z/OS 4.1: Intercommunication Guide



exchanges syncpoint messages with any mirror transactions that have not yet 
ended. This situation is called the multiple-mirror. 

v   The mirror transaction uses the CICS command-level interface to run CICS 
requests, and the DL/I CALL or the EXEC DLI interface to run DL/I requests. 
The request is thus processed as for any other transaction and the requested 
resource is located in the appropriate resource table. If its entry defines the 
resource as remote, the mirror transaction's request is formatted for transmission 
and sent to another mirror transaction in the specified system. This situation is 
called a chained-mirror. To guard against possible threats to data integrity caused 
by session failures, you are recommended to avoid defining a connected system 
in which chained mirror requests occur, except when the requests involved do 
not access protected resources, or are inquiry-only requests.

MRO function shipping 
For MRO function shipping, the operation of the mirror transaction is slightly 
different from that described for ISC function shipping. 

Long-running mirror tasks 
Normally, MRO mirror tasks are stopped as soon as possible, in the same way as 
described for ISC mirrors, to keep the number of active tasks to a minimum and to 
avoid holding on to the session for long periods. 

However, for some applications, it is more efficient to retain both the mirror task 
and the session until the next sync point, though this rentention is not required for 
data integrity. For example, a transaction that issues many READ FILE requests to 
a remote system might be better served by a single mirror task, rather than by a 
separate mirror task for each request. In this way, you can reduce the overheads of 
allocating sessions on the sending side and attaching mirror tasks on the receiving 
side. 

Mirror tasks that wait for the next sync point, even though they logically do not 
need to do so, are called long-running mirrors. They are applicable to MRO links 
only, and are specified, on the system on which the mirror runs, by coding 
MROLRM=YES in the system initialization parameters. A long-running mirror is 
stopped by the next sync point (or RETURN) on the sending side. 

For some applications, the performance benefits of using long-running mirrors can 
be significant. 

Figures Figure 12 on page 42 and Figure 13 on page 42 in “Function shipping 
examples” on page 41 show how the mirror acts for MROLRM=NO and 
MROLRM=YES respectively. 

An additional system initialization parameter, MROFSE=YES, specified on the 
front-end region, extends the retention of the mirror task and the session from the 
next sync point to the end of the task. To achieve maximum benefit, use 
MROFSE=YES with MROLRM=YES on the back-end region. However, 
MROFSE=YES still applies if the back-end region has MROLRM=NO, if requests 
are of the type that cause the mirror transaction to keep its inbound session. 

Conceptually, you specify MROLRM on the back-end region and MROFSE is 
specified on the front-end region. However, if the distinction between “back end” 
and “front end” is not clear, it is safe to code both parameters on each region if 
necessary. 

 

Chapter 4. CICS function shipping 39



MROFSE=YES gives a performance improvement only if most applications 
initiated from the front-end region have multiple sync points and function 
shipping requests are issued between each sync point. 

Do not specify MROFSE=YES in the front-end region when long-running tasks 
might be used to function-ship requests, because a SEND session is not available 
for allocation to other tasks when unused. If you specify MROFSE=YES you might 
prevent the connection from being released, when contact has been lost with the 
back-end region, until the task ends or issues a function-shipped request. 

The short-path transformer 
CICS uses a special transformer program (DFHXFX) for function shipping over 
MRO links. 

This short-path transformer optimizes the path length involved in the construction of 
the terminal input/output areas (TIOA) that are sent on an MRO session for 
function shipping. It optimizes the path length by using a private CICS format for 
the transformed request, rather than the architected format defined by SNA. 

CICS uses DFHXFX for shipping file control, transient data, temporary storage, 
and interval control (asynchronous processing) requests. It is not used for DL/I 
requests. The shipped request always specifies the CICS mirror transaction, CSMI. 
Architected process names are not used. 

Handling errors and failure of the mirror transaction 
If the mirror task in the remote region encounters an error or abend, and the 
mirror program can handle the error or abend, the error or abend is returned to 
the application program that issued the function-shipped request. 

About this task 

The remote mirror (server) task, and the task executing the program that issued the 
request (client task), share a common transaction scope unless the request was one 
of the following requests: 
v   A function-shipped EXEC CICS START NOCHECK command 
v   A distributed program link (DPL) request with SYNCONRETURN 
v   A non update request; for example, a file control read only

If the server task performs recoverable work as part of such a common transaction 
scope, that work will be committed or backed out under the control of the 
syncpoint processing of the client task even though an error or abend was 
encountered. The default action is for the error or abend to cause abnormal 
termination of the client task and to back out all recoverable updates made by both 
the client and server programs 

However, in common with local execution (that is, when not using 
function-shipping or distributed program link), the application program that issued 
the request that was function-shipped might attempt to handle the error or abend. 
The handle logic subsequently issues an EXEC CICS SYNCPOINT, SYNCPOINT ROLLBACK, 
RETURN, or ABEND command. Attempting a SYNCPOINT or RETURN, (rather than a 
SYNCPOINT ROLLBACK or ABEND) despite being informed of the error or abend, results 
in an attempt to commit the client program's local resource updates and those 
performed by the server transaction before the error or abend was encountered. 

 

40 CICS TS for z/OS 4.1: Intercommunication Guide



If the mirror program cannot handle the error or abend encountered by the mirror 
transaction and this causes the termination and backout of the mirror transaction 
without sending a response to the client application, CICS forces the client 
program's transaction to back out. Any explicit sync point attempt fails and the 
local updates are backed out. This response also occurs if a problem is encountered 
with the communications link between the client and server tasks. 

If the client and server tasks do not share a common transaction scope, as 
described previously, errors or abends that result in the stopping of the server task, 
and problems with the communications link, do not force the client's transaction to 
back out. 

Function shipping examples 
These examples illustrate the lifetime of the mirror transaction and the information 
flowing between the application and its mirror (CSM*). 

The examples contrast the action of the mirror transaction when accessing 
protected and unprotected resources on behalf of the application program, over 
MRO or ISC links, with and without MRO long-running mirror tasks. 
  

Transmitted
System A Information

Application Transaction
.
.

EXEC CICS READ Attach CSM*,
FILE('RFILE') 'READ' request
... Attach mirror

transaction.
Perform READ request.

'READ' reply,last
Free session. Reply is Free session.
passed back to the Terminate mirror.
application, which
continues processing.

  

Figure 11. ISC function shipping: simple inquiry. In this example, no resource is being changed; the session is freed 
and the mirror task is stopped immediately.

 

Chapter 4. CICS function shipping 41



Transmitted
System A Information

Application Transaction {DFHSIT MROLRM(NO)}
.
.

EXEC CICS READ Attach CSM*,
FILE('RFILE') 'READ' request
... Attach mirror

transaction.
Perform READ request.

'READ' reply,last
Free session. Reply is Free session.
passed back to the Terminate mirror.
application, which
continues processing.

Figure 12. MRO function shipping: simple inquiry. In this example, no resource is being changed. Because 
long-running mirror tasks are not specified, the session is freed by System B and the mirror task is therefore stopped 
immediately.

Transmitted
System A Information

Application Transaction {DFHSIT MROLRM(YES)}
.
.

EXEC CICS READ Attach CSM*,
FILE('RFILE') 'READ' request
... Attach mirror

transaction.
Perform READ request.

'READ' reply
Hold session. Reply is Hold session. Mirror
passed back to the waits for next request.
application, which
continues processing.

  

Figure 13. MRO function shipping: simple inquiry. In this example,no resource is being changed. However, because 
long-running mirror tasks are specified, the session is held by System B, and the mirror task waits for the next 
request.

 

42 CICS TS for z/OS 4.1: Intercommunication Guide



Transmitted
System A Information

Application Transaction
.
.

EXEC CICS READ UPDATE Attach CSM*, 'READ
FILE('RFILE') ... UPDATE' request

. Attach mirror

. transaction.
Reply passed to 'READ UPDATE' reply
application Perform READ UPDATE.

.

. Mirror waits.
EXEC CICS REWRITE 'REWRITE' request
FILE('RFILE') Mirror performs

REWRITE.
Reply passed to 'REWRITE' reply
application

. Mirror waits, still

. 'SYNCPOINT' request, holding the enqueue on
EXEC CICS SYNCPOINT last the updated record.

Mirror takes syncpoint,
positive response releases the enqueue,

Syncpoint completed. frees the session, and
Application continues. terminates.

Figure 14. ISC or MRO function shipping: update. Because the mirror must wait for the REWRITE, it becomes 
long-running and is not terminated until SYNCPOINT is received. Note that the enqueue on the updated record is not 
held beyond the REWRITE command if the file is not recoverable.

 

Chapter 4. CICS function shipping 43



Figure 15 is similar to Figure 14 on page 43, except that an abend occurs during 
sync point processing. 

Transmitted
System A Information

Application Transaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE') ... Attach CSM*, 'READ

. UPDATE' request

. Attach mirror

. transaction.

.
Reply passed to 'READ UPDATE' reply Perform READ UPDATE.
application

. Mirror waits.
EXEC CICS REWRITE
FILE('RFILE') 'REWRITE' request

. Mirror performs

. REWRITE.
Reply passed to 'REWRITE' reply
application

. Mirror waits.

. 'SYNCPOINT' request,
EXEC CICS SYNCPOINT last

Mirror attempts
syncpoint but abends
(for example, logging

Application is abended negative response error). Mirror backs
and backs out. out and terminates.
Message routed to CSMT. Abend message

Session freed.

  

Figure 15. ISC or MRO function shipping: update with ABEND.

 

44 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 5. Asynchronous processing 

Asynchronous processing distributes the processing required by an application 
between intercommunicating systems. The processing is independent of the 
sessions on which requests are sent and replies are received. 

This chapter contains the following topics: 
v   “Overview of asynchronous processing” 
v   “Asynchronous processing methods” on page 46 
v   “Asynchronous processing using START and RETRIEVE commands” on page 47 
v   “System programming considerations” on page 53 
v   “Asynchronous processing examples” on page 53.

Overview of asynchronous processing 
Asynchronous processing provides a means of distributing the processing that is 
required by an application between systems in an intercommunication 
environment. Unlike distributed transaction processing, however, the processing is 
asynchronous. 

In distributed transaction processing, a session is held by two transactions for the 
period of a “conversation” between them, and requests and replies can be directly 
correlated. 

In asynchronous processing, the processing is independent of the sessions on 
which requests are sent and replies are received. No direct correlation can be made 
between a request and a reply, and no assumptions can be made about the timing 
of the reply. These differences are illustrated in Figure 16. 
 

A typical application area for asynchronous processing is online inquiry on remote 
databases; for example, an application to check a credit rating. A terminal operator 
can use a local transaction to enter a succession of inquiries without waiting for a 
reply to each individual inquiry. For each inquiry, the local transaction initiates a 

    System A              System B 

Synchronous Processing (DTP)

TRAN1 TRAN2 TRAN1 and TRAN2 hold synchronous
conversation on session.

Asynchronous Processing
TRAN3 TRAN4

TRAN3 initiates TRAN4 and sends
request.
Later TRAN4 initiates TRAN5

TRAN5 and sends reply.
No direct correlation exists
between executions of TRAN3 and
TRAN5.

  

Figure 16. Synchronous and asynchronous processing compared

 

© Copyright IBM Corp. 1977, 2011 45



remote transaction to process the request, so that many copies of the remote 
transaction can be executing concurrently. The remote transactions send their 
replies by initiating a local transaction (possibly the same transaction) to deliver 
the output to the operator terminal (the one that initiated the transaction). The 
replies may not arrive in the same order as that in which the inquiries were issued; 
correlation between the inquiries and the replies must be made by means of fields 
in the user data. 

In general, asynchronous processing is applicable to any situation in which it is not 
necessary or desirable to tie up local resources while a remote request is being 
processed. 

Asynchronous processing is not suitable for applications that involve synchronized 
changes to local and remote resources; for example, it cannot be used to process 
simultaneous linked updates to data split between two systems. 

Asynchronous processing methods 
In CICS, asynchronous processing can be done in either of two ways. 
1.   By using the interval control commands START and RETRIEVE. 

You can use the START command to schedule a transaction in a remote system 
in much the same way as you would in a single CICS system. This type of 
asynchronous processing is in effect a form of CICS function shipping, and as 
such, it is transparent to the application. The systems programmer determines 
whether the attached transaction is local or remote. 
If you use the START command for asynchronous processing, you can 
communicate only with systems that support the special protocol needed for 
function shipping; that is, CICS itself and IMS. 
A CICS transaction that is initiated by a remotely-issued start request can use 
the RETRIEVE command to retrieve any data associated with the request. Data 
transfer is restricted to a single record passing from the initiating transaction to 
the transaction initiated. 

2.   By using distributed transaction processing (DTP). 
This is a cross-system method and has no single-system equivalent. You can 
use it to initiate a transaction in a remote system that supports one of the DTP 
protocols. 
When you use DTP to attach a remote transaction, you also allocate a session 
and start a conversation. This permits you to send data directly and, if you 
want, to receive data from the remote transaction. Your transaction design 
determines the format and volume of the data you exchange. For example, you 
can use repeated SEND commands to pass multirecord files. 
When you have exchanged data, you terminate the conversation and quit the 
local transaction, leaving the remote transaction to run on independently. 
The procedure to be followed by the two transactions during the time that they 
are working together is determined by the application programming interface 
(API) for the protocol you are using. APPC is the preferred one, although you 
must use LUTYPE6.1 if you want to communicate with IMS. You may want to 
take advantage of the flexible data exchange facilities by employing this 
method across MRO links too. 
Whatever protocol you decide to use, you must observe the rules it imposes. 
However short the conversation, during the time it is in progress, the 
processing is synchronous. In terms of command sequencing, error recovery, 
and syncpointing, it is full DTP.

 

46 CICS TS for z/OS 4.1: Intercommunication Guide



In both forms of asynchronous processing (and also in synchronous processing), a 
CICS transaction can use the EXEC CICS ASSIGN STARTCODE command to 
determine how it was initiated. 

CICS-to-IMS communication includes a special case of the DTP method described 
above. Because it restricts data communication to one SEND LAST command 
answered by a single RECEIVE, this book refers to it elsewhere as the 
SEND/RECEIVE interface. The circumstances under which it is used are described 
in Chapter 23, “CICS-to-IMS applications,” on page 257. 

The remainder of this chapter is devoted to asynchronous processing using START 
and RETRIEVE commands. Distributed transaction processing is described in 
Chapter 9, “Distributed transaction processing,” on page 105. 

Asynchronous processing using START and RETRIEVE commands 
The following interval control commands can be used for asynchronous processing. 
v   START 
v   CANCEL 
v   RETRIEVE. 

For programming information about CICSinterval control, see Interval control , in 
the CICS Application Programming Guide . 

Starting and canceling remote transactions 
The interval control START command is used to schedule transactions 
asynchronously in remote CICS and IMS systems. The command is function 
shipped. If the remote system is CICS, the mirror transaction is invoked in the 
remote system to issue the START command on that system. 

About this task

Note:  

For information about canceling dynamically-routed START commands, see 
“Canceling interval control requests” on page 86. 

For CICS-to-CICS communication, you can include time-control information on the 
shipped START command in the normal way, by means of the INTERVAL or TIME 
options. A TIME specification is converted by CICS to a time interval, relative to 
the local clock, before the command is shipped. Because the ends of an intersystem 
link may be in different time zones, it is usually better to think in terms of time 
intervals, rather than absolute times, for intersystem communication. 

Note particularly that the time interval specified on a START command specifies 
the time at which the remote transaction is to be initiated, not the time at which 
the request is to be shipped to the remote system. 

A START command shipped to a remote CICS system can be canceled at any time 
up to its expiration time by shipping a CANCEL command to the same system. 
The particular START command has a unique identifier (REQID), which you can 
specify on the START command and on the associated CANCEL command. The 
CANCEL command can be issued by any task that “knows” the identifier. 

 

Chapter 5. Asynchronous processing 47



Time control cannot be specified for START commands sent to IMS systems; 
INTERVAL(0) must be specified or allowed to take the default value. Consequently, 
start requests for IMS transactions cannot be canceled after they have been issued. 

Passing information with the START command 
The START command has a number of options that enable information to be made 
available to the remote transaction when it is started. If the remote transaction is in 
a CICS system, it obtains the information by issuing a RETRIEVE command. 

About this task 

The information that can be specified is summarized in the following list: 
v   User data—specified in the FROM option. 

This is the principal way in which data can be passed to the remote transaction. 
For CICS-to-CICS communication, additional data can be made available in a 
transient data or temporary storage queue named in the QUEUE option. The 
queue can be on any CICS system that is accessible to the system on which the 
remote transaction is executed. 
The QUEUE option cannot be used for CICS-to-IMS communication. 

v   The transaction and terminal names to be used for replies—specified in the 
RTRANSID and RTERMID options. 
These options, whose values are set by the local transaction, provide the means 
for the remote transaction to pass a reply to the local system. (That is, the 
TRANSID and TERMID specified by the remote transaction on its reply are the 
RTRANID and RTERMID specified by the local system on the initial request.) 

v   A terminal name—specified in the TERMID option. 
For CICS-to-CICS communication, this is the name of a terminal that is to be 
associated with the remote transaction when it is initiated. It may be that the 
terminal is defined on the region that owns the remote transaction but is not 
owned by that region. If so, it is obtained by the automatic transaction initiation 
(ATI) facility of transaction routing. See “Traditional routing of transactions 
started by ATI” on page 69. 
The global user exits XICTENF and XALTENF can be coded to cover the case of 
the terminal that is shippable but not defined in the application-owning region. 
See “Shipping terminals for automatic transaction initiation” on page 71. 
For CICS-to-IMS communication, it is a transaction code or an LTERM name.

Passing a sysid or applid with the START command 
If you have a transaction that can be started from several different systems, and 
which is required to issue a START command to the system that initiated it, you 
can arrange for all of the invoking transactions to send their local system sysid or 
applid as part of the user data in the START command. 

About this task 

An initiating transaction can obtain its local sysid by using an ASSIGN SYSID 
command, or its applid by using an ASSIGN APPLID command. 

If the name of the connection to the remote system matches the SYSIDNT system 
initialization parameter of the remote system (typical of MRO), then the started 
transaction can reply using a START command specifying the passed sysid. 

 

48 CICS TS for z/OS 4.1: Intercommunication Guide



If the name of an APPC or LUTYPE6.1 connection to the remote system does not 
match the SYSIDNT system initialization parameter of the remote, then the started 
transaction can still determine the sysid to be responded to. It can do this by 
issuing an EXTRACT TCT command on which the NETNAME option specifies the 
passed applid. 

Improving performance of intersystem START requests 
In many inquiry-only applications, sophisticated error-checking and recovery 
procedures are not justified. Where the transactions make inquiries only, the 
terminal operator can retry an operation if no reply is received within a specific 
time. In such a situation, the number of messages to and from the remote system 
can be substantially reduced by using the NOCHECK option of the START 
command. 

About this task 

Where the connection between the two systems is via VTAM, this can result in 
considerably improved performance. The price paid for better performance is the 
inability of CICS to detect some types of error in the START command. 

A typical use for the START NOCHECK command is in the remote inquiry 
application described at the beginning of this chapter. 

The transaction attached as a result of the terminal operator's inquiry issues an 
appropriate START command with the NOCHECK option, which causes a single 
message to be sent to the appropriate remote system to start, asynchronously, a 
transaction that makes the inquiry. The command should specify the operator's 
terminal identifier. The transaction attached to the operator's terminal can now 
terminate, leaving the terminal available for either receiving the answer or 
initiating another request. 

The remote system performs the requested inquiry on its local database, then 
issues a start request for the originating system. This command passes back the 
requested data, together with the operator's terminal identifier. Again, only one 
message passes between the two systems. The transaction that is then started in 
the originating system must format the data and display it at the operator's 
terminal. 

If a system or session fails, the terminal operator must reenter the inquiry, and be 
prepared to receive duplicate replies. To aid the operator, either a correlation field 
must be shipped with each request, or all replies must be self-describing. 

An example of intercommunication using the NOCHECK option is given in 
Figure 18 on page 56. 

The NOCHECK option is always required when shipping of the START command 
is queued pending the establishment of links with the remote system (see “Local 
queuing of START commands” on page 51), or if the request is being shipped to 
IMS. 

Including start request delivery in a unit of work 
The delivery of a start request to a remote system can be made part of a unit of 
work by specifying the PROTECT option on the START command. 

 

Chapter 5. Asynchronous processing 49



About this task 

The PROTECT option indicates that the remote transaction must not be scheduled 
until the local one has successfully completed a synchronization point (syncpoint). 
(It can take the syncpoint either by issuing a SYNCPOINT command or by 
terminating normally.) 

Successful completion of the syncpoint guarantees that the start request has been 
delivered to the remote system. It does not guarantee that the remote transaction 
has completed, or even that it will be initiated. 

If the remote system is IMS, no message must cross the link between the START 
command and the syncpoint. Both PROTECT and NOCHECK must be specified 
for all IMS recoverable transactions. 

Deferred transmission of START requests with NOCHECK 
option for ISC links 

For START commands with the NOCHECK option, whether you specify 
PROTECT, CICS can defer transmission of the request to the remote system for ISC 
links. For MRO links and IP interconnectivity (IPIC), START requests with 
NOCHECK are not deferred. 

For ISC links, START requests with NOCHECK are deferred until one of the 
following events occurs: 
v   The transaction issues a further START command or any function shipping 

request for the same system. 
v   The transaction issues a SYNCPOINT command. 
v   The transaction stops with an implicit sync point.

The first, or only, start request transmitted from a transaction to a remote system 
carries the begin-bracket indicator; the last, or only, request carries the end-bracket 
indicator. Also, if any of the start requests issued by the transaction specifies 
PROTECT, the last request in the unit of work (UOW) carries the sync point 
request indicator. Deferred sending allows the indicators to be added to the 
deferred data, and thus reduces the number of transmissions required. 

Start requests are processed differently, if there are limitations because of protocol, 
connection, or receiving system: 
v   For both the APPC and LUTYPE6.1 protocols, if the first START with 

NOCHECK is followed by a second START with NOCHECK command, CICS 
transmits the first command and defers the second. 

v   For LUTYPE6.1 and 6.2 protocols, the sequence of requests is transmitted in a 
single SNA bracket and, if the remote system is CICS, all the requests are 
handled by the same mirror task. 

v   For MRO and IPIC connections, if the first START with NOCHECK is followed 
by a second START with NOCHECK command, CICS transmits both commands. 

v   For IMS, no message can cross the link between a START request and the 
following sync point. Therefore, you cannot send multiple START NOCHECK 
PROTECT requests to IMS. Each request must be followed by a SYNCPOINT 
command or by termination of the transaction. IP interconnectivity (IPIC) does 
not support requests to IMS.

 

50 CICS TS for z/OS 4.1: Intercommunication Guide

|

|
|

|
|



Intersystem queuing 
If the link to a remote region is established, but there are no free sessions available, 
function shipped EXEC CICS START requests used to schedule remote transactions 
may be queued in the issuing region. 

Performance problems can occur if the queue becomes excessively long. This 
problem is described on page “Intersystem queuing” on page 36. 

For guidance information about controlling intersystem queues, see Chapter 24, 
“Intersystem session queue management,” on page 279. 

Local queuing of START commands 
If a remote system is unavailable, either because it is not active or because a 
connection cannot be established, an attempt to function ship a START request to 
the remote system usually results in the SYSIDERR condition being returned to the 
application. 

Provided that the remote system is directly connected to this CICS system, and 
that you specify the NOCHECK option on the START command, you can arrange 
for the request to be queued locally, and forwarded when the required link is in 
service. 

You cannot cancel a START request while it remains on the local queue. The 
request can be cancelled only when the required link is back in service, the request 
has been sent to the target region, and before the request is run. 

A SYSIDERR condition is also returned when there is a connection to the remote 
system, but there are no sessions available and you have chosen not to queue the 
request in the issuing region. You can specify local queuing in two ways: 
1.   Specify LOCALQ(YES) on the local definition of the remote transaction. The 

LOCALQ option specifies that local queuing is used, where necessary, for all 
requests from the local system for a particular remote transaction. 
For information about the LOCALQ option, see the CICS Resource Definition 
Guide. 

2.   Use an XISLCLQ or XISQLCL global user exit program. 
XISLCLQ is invoked only for function-shipped EXEC CICS START NOCHECK 
commands, which are scheduled for a non-IPIC connection, when these 
conditions apply: 
v   The remote system is unavailable, or 

v   A connection exists to the remote system but there no sessions are available, 
and either the number of requests currently queued in the issuing region has 
reached the maximum specified on the QUEUELIMIT option of the 
CONNECTION definition or your XZIQUE or XISCONA global user exit 
program has specified that the request is not to be queued in the issuing 
region.

XISQLCL is invoked for EXEC CICS START NOCHECK commands, which are 
scheduled for an IPIC connection, when these conditions apply: 
v   The IPIC connection is not acquired. 
v   A session is not available and CICS does not queue the request for a new 

session.

If the connection resource is discarded, any requests that you have added to the 
local queue are lost. 

 

Chapter 5. Asynchronous processing 51

|
|
|

|
|

|

|
|

|
|



Your user exit program can decide, on a request-by-request basis, whether to 
queue locally. 
For programming information about the XISCONA, XISLCLQ, and XISQLCL 
global user exits, see the CICS Customization Guide.

Data retrieval by a started transaction 
A CICS transaction that is started by a start request can get the user data and other 
information associated with the request by using the RETRIEVE command. 

In accordance with the normal rules for CICS interval control, a start request for a 
particular transaction that carries both user data and a terminal identifier is 
queued if the transaction is already active and associated with the same terminal. 
During the waiting period, the data associated with the queued request can be 
accessed by the active transaction by using a further RETRIEVE command. This 
has the effect of canceling the queued start request. 

Thus, it is possible to design transactions that can handle the data associated with 
multiple start requests. Typically, a long-running local transaction could be 
designed to accept multiple inquiries from a terminal and ship start requests to a 
remote system. From time to time, the transaction would issue RETRIEVE 
commands to receive the replies, the absence of further replies being indicated by 
the ENDDATA condition. 

The WAIT option of the RETRIEVE command can be used to put the transaction 
into a wait state pending the arrival of the next start request from the remote 
system. If this option is used in a task attached to an APPC device, CICS does not 
suspend the task, but instead raises the ENDDATA condition if no data is currently 
available. However, for tasks attached to non-APPC devices, you must make sure 
that your transaction does not get into a permanent wait state in the absence of 
further start requests. 

Important:  

If a started transaction issues multiple RETRIEVE commands, or uses the WAIT 
option of the RETRIEVE command, allow the ROUTABLE option of the transaction 
definition, in the region in which the START command is issued, to default to 
ROUTABLE(NO). If the transaction is defined as ROUTABLE(YES), multiple 
RETRIEVE or RETRIEVE WAIT commands may not work as you expect. 

For information about the ROUTABLE option of the START command, see 
“Routing transactions invoked by START commands” on page 78. 

Terminal acquisition by a remotely-initiated CICS transaction 
When a CICS transaction is started by a start request that names a terminal 
(TERMID), CICS makes the terminal available to the transaction as its principal 
facility. 

It makes no difference whether the start request was issued by a user transaction 
in the local CICS system or was received from a remote system and issued by the 
mirror transaction. 

Starting transactions with ISC or MRO sessions 
You can name a system, rather than a terminal, in the TERMID option of the 
START command. 

 

52 CICS TS for z/OS 4.1: Intercommunication Guide



About this task 

If CICS finds that the “terminal” named in a locally- or remotely-issued start 
request is a system, it selects a session available to that system and makes it the 
principal facility of the started transaction (see “Terminology” on page 241). If no 
session is available, the request is queued until there is one. 

If the link to the system is an APPC link, CICS uses the modename associated with 
the transaction definition to select a class-of-service for the session. 

System programming considerations 
This section discusses the CICS resources that must be defined for asynchronous 
processing. 
v   A link to a remote system must be defined. 
v   Remote transactions that are to be initiated by start requests must be defined as 

remote resources to the local CICS system. This is not necessary, however, for 
transactions that are initiated only by START commands that name the remote 
system explicitly in the SYSID option. 

v   If the QUEUE option is used, the named queue must be defined on the system 
to which the start request is shipped. The queue can be either a local or a remote 
resource on that system. 

v   If a START request names a “reply” transaction, that transaction must be defined 
on the system to which the start request is shipped.

Asynchronous processing examples 
 

 

Chapter 5. Asynchronous processing 53



System A Transmitted Information System B

{DFHSIT MROLRM(YES)}

Transaction TRX
initiated by
terminal T1

EXEC CICS START
TRANSID('TRY')
RTRANSID('TRZ')
RTERMID('T1') Attach CSM*
FROM(area) 'SCHEDULE' request for
LENGTH(length) transaction

Attach mirror
transaction.
Perform START request
for transaction TRY.

'SCHEDULE' reply,last
Free session. Pass Free session. Terminate
return code to mirror.
application program. Session available for Transaction TRY is
Continue processing. remote requests from dispatched and starts

other transactions in processing.
system A or B.

EXEC CICS RETRIEVE
INTO (area)
LENGTH(length)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ',
T has value 'T1')

Processing based on
data acquired.
Results put into
TS queue named RQUE.

EXEC CICS START
TRANSID(TR)
TERMID(T)

Attach CSM* QUEUE('RQUE')
'SCHEDULE' request for (TR has value 'TRZ',
transaction T has value 'T1')

Attach mirror
transaction.

(continued)

System A Transmitted Information System B

Perform START request
with TRANSID value of
'TRZ' and TERMID value
of 'T1'.

'SCHEDULE' reply
Mirror waits for
SYNCPOINT. RETURN

'SYNCPOINT' request,last (implicit syncpoint)

positive response
Free session.
Terminate mirror.

Transaction TRZ is
dispatched on terminal
T1 and starts
processing.

 

54 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 5. Asynchronous processing 55



System A Transmitted Information System B

Transaction TRX
initiated by terminal
T1

EXEC CICS START
TRANSID('TRY')
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(length)
NOCHECK

Attach CSM*
Terminate, and free 'SCHEDULE' request for
terminal T1. T1 could trans, last (no reply)
now initiate another Attach mirror.
transaction, but TRZ Perform START
could not start until request for transaction
T1 became free again. session available TRY. Free session.

Terminate mirror.
Transaction TRY is
dispatched and starts.
EXEC CICS RETRIEVE
INTO (area)
LENGTH(length)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ',
T has value 'T1')

Data determines
processing. Reply
put in data area REP.

EXEC CICS START
TRANSID(TR)
FROM(REP)
LENGTH(length)
TERMID(T)
NOCHECK

(TR has value 'TRZ',
T has value 'T1')

(continued)

System A Transmitted Information System B

Attach CSM*
'SCHEDULE' request for TRY terminates.
trans, last (no reply)

Attach mirror
transaction.

Perform START request
with TRANSID value of
'TRZ' and TERMID value
of 'T1'.
Free session. session available

Terminate mirror.

Transaction TRZ is
dispatched on terminal
T1 and starts
processing.

Figure 18. Asynchronous processing—remote transaction initiation using NOCHECK. This example shows an ISC 
connection, or an MRO connection without long-running mirrors.

 

56 CICS TS for z/OS 4.1: Intercommunication Guide



Figure 18 on page 56 shows an ISC connection, or an MRO connection without 
long-running mirrors. 

 

Chapter 5. Asynchronous processing 57



58 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 6. Introduction to CICS dynamic routing 

This chapter is an overview of the CICS dynamic routing interface. 

The information it contains is relevant to both Chapter 7, “CICS transaction 
routing,” on page 65 and Chapter 8, “CICS distributed program link,” on page 95. 

What is dynamic routing? 
In a CICSplex, resources (for example, transactions or programs) required by one 
region may be owned by another region (the resource-owning region). For 
example, you may have a terminal-owning region that requires access to 
transactions owned by an application-owning region. 

Static routing 
Static routing means that the location of the remote resource is specified at 
design time. Requests for a particular resource are always routed to the same 
region. Typically, when static routing is used, the location of the resource is 
specified in the installed resource definition. 

Dynamic routing 
Dynamic routing means that the location of the remote resource is decided at 
run time. The decision is taken by a CICS-supplied user-replaceable routing 
program. The routing program may, at different times, route requests for a 
particular resource to different regions. This means, for example, that if you 
have several cloned application-owning regions, your routing program could 
balance the workload across the regions dynamically.

 All the following can be dynamically routed: 
v   Transactions started from terminals. 
v   Transactions invoked by a subset of EXEC CICS START commands. 
v   CICS-to-CICS distributed program link (DPL) requests. 
v   Program-link requests received from outside CICS; for example, External Call 

Interface (ECI) calls received from CICS Clients. 
v   CICS business transaction services (BTS) processes and activities. (BTS is 

described in the CICS Business Transaction Services.) 
v   Method requests for enterprise beans and CORBA stateless objects. (Enterprise 

beans are described in Java Applications in CICS.) 
v   Bridge 3270 transactions.

Some further definitions are necessary: 

Requesting region 
The region in which a transaction or other routable request is issued. Here 
are some examples of what we mean by “requesting region”: 
v   For transactions started from terminals, it is the terminal-owning region 

(TOR). 
v   For transactions started by EXEC CICS START commands, it is the region 

in which the START command is issued. 
v   For “traditional” CICS-to-CICS DPL calls, it is the region in which the 

EXEC CICS LINK PROGRAM command is issued. 

 

© Copyright IBM Corp. 1977, 2011 59



v   For program-link calls received from outside CICS, it is the CICS region 
which receives the call. 

v   For BTS processes and activities, it is the region in which the EXEC CICS 
RUN ACTIVITY ASYNCHRONOUS command is issued. 

v   For method requests on enterprise beans or CORBA stateless objects: 
–   If the method call is issued outside CICS; for example, by a remote 

(non-CICS) IIOP client. The requesting region is the listener region 
which receives the call. 

–   If the method call is issued inside CICS; for example, by an enterprise 
bean object that calls a method of another enterprise bean. The 
requesting region is the region on which the call is issued.

Routing region 
The region in which the routing program is invoked for route selection. 
With two exceptions, the requesting region and the routing region are 
always the same region. The exceptions are: 
1.   Some terminal-related START commands: 
v   Because a terminal-related START command is always executed in 

the terminal-owning region, the requesting region and the routing 
region may or may not be the same. (This is fully explained in 
“Routing transactions invoked by START commands” on page 78.) 

v   The routing region is always the TOR.
2.   Some method requests for enterprise beans or CORBA stateless objects 

issued inside CICS: 
v   An enterprise bean, program, or object on the local EJB/CORBA 

server calls a method of an object on a remote EJB/CORBA server. 
The requesting region is the local region on which the method call is 
issued. The routing region is the listener region on the remote 
EJB/CORBA server.

Target region 
The region in which the routed transaction or request executes.

Two routing models 
There are two possible dynamic routing models. 

The “hub” model 
The “hub” is the model that has traditionally been used with CICS dynamic 
transaction routing. 

A routing program running in a TOR routes transactions between several AORs. 
Usually, the AORs (unless they are AOR/TORs) do no dynamic routing. Figure 19 
on page 61 shows a “hub” routing model. 
 

 

60 CICS TS for z/OS 4.1: Intercommunication Guide



The “hub” model applies to the routing of: 
v   Transactions started from terminals. 
v   Transactions started by terminal-related START commands. 
v   Program-link requests received from outside CICS. (The receiving region acts as 

a “hub” or “TOR” because it routes the requests among a set of back-end server 
regions.) 

v   Bridge 3270 requests.

The “hub” model is a hierarchical system—routing is controlled by one region (the 
TOR); normally a routing program runs only in the TOR. 

Advantage of the “hub” model 
It is a relatively simple model to implement. For example, compared to the 
distributed model, there are few inter-region connections to maintain. 

Disadvantages of the “hub” model 
v   If you use only one “hub” to route transactions and program-link requests 

across your AORs, the “hub” TOR is a single point-of-failure. 
v   If you use more than one “hub” to route transactions and program-link requests 

across the same set of AORs, you may have problems with distributed data. For 
example, if the routing program keeps a count of routed transactions for 
load-balancing purposes, each “hub”-TOR will need access to this data.

The distributed model 
In the distributed model, each region may be both a routing region and a target 
region. 

A routing program runs in each region. Figure 20 on page 62 shows a distributed 
routing model. 
 

TOR

Possible
Target region

Possible
Target region

Possible
Target region

Possible
Target region

Routing region

Requesting region Dynamic
routing
program

  

Figure 19. Dynamic routing using a “hub” routing model. One routing region (the TOR) selects between several target 
regions.

 

Chapter 6. Introduction to CICS dynamic routing 61



The distributed model applies to the routing of: 
v   CICS business transaction services processes and activities 
v   Method requests for enterprise beans and CORBA stateless objects 
v   Non-terminal-related START requests 
v   CICS-to-CICS DPL requests

The distributed model is a peer-to-peer system—each participating CICS region may 
be both a routing region and a target region. A routing program runs in each 
region. 

Advantage of the distributed model 
There is no single point-of-failure. 

Disadvantages of the distributed model 
v   Compared to the “hub” model, there are a great many inter-region connections 

to maintain. 

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

  

Figure 20. Dynamic routing using a distributed routing model. Each region may be both a routing region and a target 
region.

 

62 CICS TS for z/OS 4.1: Intercommunication Guide



v   You may have problems with distributed data. For example, any data used to 
make routing decisions must be available to all the regions. (CICSPlex SM solves 
this problem by using dataspaces.)

Two routing programs 
There are two CICS-supplied user-replaceable programs for dynamic routing: 

The dynamic routing program, DFHDYP 
Can be used to route: 
v   Transactions started from terminals 
v   Transactions started by terminal-related START commands 
v   CICS-to-CICS DPL requests 
v   Program-link requests received from outside CICS 
v   Bridge 3270 requests

The distributed routing program, DFHDSRP 
Can be used to route: 
v   CICS business transaction services processes and activities 
v   Method requests for enterprise beans and CORBA stateless objects 
v   Non-terminal-related START requests.

 The two routing programs: 
1.   Are specified on separate system initialization parameters. You specify the 

name of your dynamic routing program on the DTRPGM system initialization 
parameter. You specify the name of your distributed routing program on the 
DSRTPGM system initialization parameter. 

2.   Are passed the same communications area. (Certain fields that are meaningful 
to one program are not meaningful to the other.) 

3.   Are invoked at similar points—for example, for route selection, route selection 
error, and (optionally) at termination of the routed transaction or program-link 
request.

Together, these three factors give you a great deal of flexibility. You could, for 
example, do any of the following: 
v   Use different user-written programs for dynamic routing and distributed 

routing. 
v   Use the same user-written program for both dynamic routing and distributed 

routing. 
v   Use a user-written program for dynamic routing and the CICSPlex SM routing 

program for distributed routing, or vice versa.

It is worth noting two important differences between the dynamic and distributed 
routing programs: 
1.   The dynamic routing program is only invoked if the resource (the transaction 

or program) is defined as DYNAMIC(YES). The distributed routing program, 
on the other hand, is invoked (for eligible non-terminal-related START requests, 
BTS activities, and method requests for enterprise beans and CORBA stateless 
objects) even if the associated transaction is defined as 
DYNAMIC(NO)—though it cannot route the request. What this means is that 
the distributed routing program is better able to monitor the effect of 
statically-routed requests on the relative workloads of the target regions. 

 

Chapter 6. Introduction to CICS dynamic routing 63



2.   Because the dynamic routing program uses the hierarchical “hub” routing 
model—one routing program controls access to resources on several target 
regions—the routing program that is invoked at termination of a routed request is the 
same program that was invoked for route selection. 
The distributed routing program, on the other hand, uses the distributed 
model, which is a peer-to-peer system; the routing program itself is distributed. 
The routing program that is invoked at initiation or termination of a routed transaction 
is not the same program that was invoked for route selection—it is the routing 
program on the target region.

Important:  

If you intend to route from CICS Transaction Server for z/OS, Version 4 Release 1 
to a CICS Transaction Server for OS/390, Version 1 Release 3 region (or vice versa), 
you must ensure that the PTF for CICS APAR PQ 75814 is applied to CICS 
Transaction Server for OS/390, Version 1 Release 3. 

If you use CICSPlex SM for routing, the PTFs for each of the following CICSPlex 
SM APARs must be applied to each relevant CICSPlex SM release: 
CICSPlex SM Version 1 Release 4 

PQ80891 
CICSPlex SM Version 2 Release 2 

PQ80893 
CICSPlex SM Version 2 Release 3 

PQ81235

 

64 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 7. CICS transaction routing 

CICS transaction routing allows terminals connected to one CICS system to run 
transactions in another CICS system. 

This chapter contains the following topics: 
v   “Overview of transaction routing” 
v   “Terminal-initiated transaction routing” on page 66 
v   “Traditional routing of transactions started by ATI” on page 69 
v   “Routing transactions invoked by START commands” on page 78 
v   “Allocation of remote APPC connections” on page 87 
v   “The relay program” on page 90 
v   “Basic mapping support (BMS)” on page 90 
v   “Using the routing transaction, CRTE” on page 91 
v   “System programming for transaction routing” on page 92.

Overview of transaction routing 
CICS transaction routing allows terminals connected to one CICS system to run 
with transactions in another connected CICS system. You can distribute terminals 
and transactions around your CICS systems and still have the ability to run any 
transaction with any terminal. 

Figure 21 shows a terminal connected to one CICS system running with a user 
transaction in another CICS system. Communication between the terminal and the 
user transaction is handled by a CICS-supplied transaction called the relay 
transaction. 

 

The CICS system that owns the terminal is called the terminal-owning region or 
TOR, and the CICS system that owns the transaction is called the application-owning 
region or AOR. These terms are not meant to imply that one system owns all the 
terminals and the other system all the transactions, although this is a possible 
configuration. 

The terminal-owning region and the application-owning region must be connected 
by IPIC, MRO, or APPC links. Transaction routing over LUTYPE6.1 links is not 
supported. 

CICS A CICS B
Terminal-Owning Application-Owning
Region (TOR) Region (AOR)

IPIC, MRO, or APPC
Terminal CICS Relay User

Transaction Transaction

  

Figure 21. The elements of transaction routing

 

© Copyright IBM Corp. 1977, 2011 65

|
|
|



In transaction routing, the term terminal is used in a general sense to mean such 
things as an IBM 3270, or a single-session APPC device, an APPC session to 
another CICS system, and so on. All terminal and session types supported by CICS 
are eligible for transaction routing, except those given in the following list: 
v   LUTYPE6.1 connections and sessions 
v   MRO connections and sessions 
v   EXCI connections and sessions 
v   IBM 7770 or 2260 terminals 
v   Pooled 3600 or 3650 pipeline logical units 
v   MVS system consoles

The user transaction can use the terminal control, BMS, or batch data interchange 
facilities of CICS to communicate with the terminal, as appropriate for the terminal 
or session type. Mapping and data interchange functions are performed in the 
application-owning region. BMS paging operations are performed in the 
terminal-owning region. 

Pseudo-conversational transactions are supported, except when the “terminal” is 
an APPC session, and the various transactions that make up a 
pseudo-conversational transaction can be in different systems. 

Initiating transaction routing 
Transaction routing can be initiated in three ways. 
1.   A request to start a transaction can arrive from a terminal connected to the 

TOR. On the basis of an installed resource definition for the transaction, and 
possibly on decisions made in a user-written dynamic routing program, the 
request is routed to an appropriate AOR, and the transaction runs as if the 
terminal were attached to the same region. 

2.   A transaction can be started by automatic transaction initiation (ATI) and can 
acquire a terminal that is owned by another CICS system. The two methods of 
routing transactions started by ATI are described in: 
v   “Traditional routing of transactions started by ATI” on page 69 
v   “Routing transactions invoked by START commands” on page 78.

3.   A transaction can issue an ALLOCATE command to obtain a session to an 
APPC terminal or connection that is owned by another system.

In addition to these methods, CICS provides a special transaction (CRTE) that can 
be used for the occasional invocation of transactions in other systems. See “Using 
the routing transaction, CRTE” on page 91. 

Terminal-initiated transaction routing 
When a request to start a transaction arrives at a CICS TOR, the TOR must find 
out on which system the transaction is to run. 

It does this by examining the installed transaction definition; in particular, the 
values of the DYNAMIC and REMOTESYSTEM options. See “Defining transactions 
for transaction routing” on page 221. 

Transaction routing can be either static or dynamic, depending upon the value of 
the DYNAMIC option. 

 

66 CICS TS for z/OS 4.1: Intercommunication Guide



Static transaction routing 
Static transaction routing occurs when DYNAMIC(NO) is specified in the 
transaction definition. 

In this case, the request is routed to the system named in the REMOTESYSTEM 
option. (If REMOTESYSTEM is unspecified, or if it names the local CICS system, 
the transaction is a local transaction, and transaction routing is not involved.) 

Dynamic transaction routing 

Dynamic routing models:  

Dynamic routing of terminal-initiated transactions uses the “hub” routing model 
described in “The “hub” model” on page 60. 

Specifying DYNAMIC(YES) means that you want the chance to route the terminal 
data to an alternative transaction at the time the defined transaction is invoked. 
CICS manages this by allowing a user-replaceable program, called the dynamic 
routing program, to intercept the terminal input data and specify that it be 
redirected to any transaction and system. The default dynamic routing program, 
supplied with CICS, is named DFHDYP. You can modify the supplied program, or 
replace it with one that you write yourself. You can also use the DTRPGM system 
initialization parameter to specify the name of the program that is invoked for 
dynamic routing, if you want to name your program something other than 
DFHDYP. For programming information about user-replaceable programs in 
general, and about DFHDYP in particular, see Writing a dynamic routing program, 
in the CICS Customization Guide. For information about system initialization 
parameters, see Specifying CICS system initialization parameters, in the CICS 
System Definition Guide. 

When your routing program is invoked 
CICS invokes the dynamic routing program in the following situations. 
v   When a transaction defined as DYNAMIC(YES) is initiated. 

Note:  

1.   If a transaction definition is not found, CICS uses the common transaction 
definition specified on the DTRTRAN system initialization parameter. See 
“Using a single transaction definition in the TOR” on page 225. 

2.   If the transaction is defined as DYNAMIC(YES) in the target region, as well 
as in the routing region (TOR), the dynamic routing program is invoked, for 
routing, in the target region, as well as in the TOR. Thus, it is possible to 
“daisy-chain” routed requests from one region to another. Take care that this 
does not occur unintentionally.

If the transaction was initiated from a terminal, the dynamic routing program 
can route the request. 
If the transaction was initiated by an EXEC CICS START command, the routing 
program may or may not be able to route the request—see “Routing transactions 
invoked by START commands” on page 78. 

v   If an error occurs in route selection. 
v   At the end of a routed transaction, if the initial invocation requests re-invocation 

at termination. 
v   If a routed transaction abends, if the initial invocation requests re-invocation at 

termination. 

 

Chapter 7. CICS transaction routing 67



v   For routing of DPL requests, at all the points described in “Dynamically routing 
DPL requests” on page 99.

Information passed to your routing program 
Parameters are passed in a communications area between CICS and the dynamic 
routing program. 

The program might change some of these parameters to influence subsequent CICS 
action. The parameters include: 
v   The reason for the current invocation. 
v   Error information. 
v   The sysid of the target system. Initially, the sysid specified on the 

REMOTESYSTEM option of the installed transaction definition. If no sysid was 
specified, the sysid passed is that of the local system. 
Use a single, common definition for all remote transactions that are to be 
dynamically routed. See “Using a single transaction definition in the TOR” on 
page 225. 

v   The name of the target transaction. Initially, the name specified on the 
REMOTENAME option for the installed transaction definition. If no name was 
specified, the name passed is the local name. 

v   The address of a buffer containing a copy of the data in the terminal 
input/output area (TIOA). 

v   The netname of the target system. Initially, the netname corresponds to the sysid 
specified on the REMOTESYSTEM option of the installed transaction definition. 

v   The address of the target transaction's communications area. If you are using 
channels and containers and you have defined a DFHROUTE container, 
DFHROUTE is used for the address. 

v   A user area.

Using your dynamic routing program 
You can use dynamic transaction routing to make transaction routing decisions 
based on the input to the transaction, available CICS systems, relative loading of 
the available systems, and similar factors. However, a routing program can 
perform other functions, besides redirecting transaction requests. 

Your dynamic routing program could be used for these purposes: 
v   Perform workload balancing. For example, in a CICSplex, your program could 

make intelligent choices between equivalent transactions on parallel AORs. 
v   Specify whether a request is to be queued if no sessions to a remote system are 

available. For information about controlling the length of intersystem queues, see 
Chapter 24, “Intersystem session queue management,” on page 279. 

v   For MRO and IPIC links, set the priority of the transaction attached in the AOR. 
v   Cause a user-defined program to run if the transaction cannot be routed or if the 

routed-to transaction abends. For example, if all remote CICS regions are 
unavailable and the transaction cannot be routed, you might want to run a 
program in the local terminal-owning region to send an appropriate message to 
the user. 

v   Monitor the number of requests routed to particular systems.

A dynamic routing program can issue EXEC CICS commands, but the EXEC CICS 
RECEIVE command prevents the routed-to transaction from obtaining the initial 
terminal data. 

 

68 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|

|



For programming information about writing a dynamic transaction routing 
program, see Writing a dynamic routing program , in the CICS Customization Guide. 

The CICS Interdependency Analyzer 
CICS transactions use many techniques to pass information between one another, 
and to synchronize activity between themselves. 

Some of these techniques require the transactions exchanging data to execute in the 
same CICS region, and therefore impose restrictions on the dynamic routing of the 
transactions. If you are using dynamic transaction routing for workload balancing 
purposes (where equivalent transactions reside on multiple systems), your routing 
program must be aware of transactions that are dependent on each other (that is, 
that contain affinities) so that it can route them consistently. 

If you are planning to create a dynamic transaction routing environment, 
consisting perhaps of a mixture of CICS Transaction Server for z/OS, Version 4 
Release 1 and earlier systems, you may find the CICS Interdependency Analyzer 
useful. It can be used to identify the causes of inter-transaction affinities in CICS 
Transaction Server for z/OS and CICS Transaction Server for OS/390 regions. 

For more information about this utility, see the CICS Interdependency Analyzer for 
z/OS User's Guide and Reference. 

For further information about transaction affinities, see Affinity , in the CICS 
Application Programming Guide. 

Using CICSPlex SM 
Normally, to take advantage of dynamic transaction routing, you have to write a 
dynamic transaction routing program. 

However, if you use the CICSPlex System Manager (CICSPlex SM) product to 
manage your CICSplex, you need not do so. CICSPlex SM provides a dynamic 
routing program that supports both workload balancing and workload separation. 
All you have to do is to tell CICSPlex SM, through its user interface, which TORs 
and AORs in the CICSplex can participate in dynamic transaction routing, and 
define any affinities that govern the AORs to which particular transactions must be 
routed. The output from the CICS Interdependency Analyzer can be used directly 
by CICSPlex SM. 

Using CICSPlex SM, you could integrate workload balancing for transactions and 
DPL requests. 

For introductory information about CICSPlex SM, see the CICSPlex SM Concepts 
and Planning manual. 

Traditional routing of transactions started by ATI 
Use the "traditional" method of routing transactions that are started by automatic 
transaction initiation (ATI) only if you cannot use the enhanced method. 

Important:  

Wherever possible, you should use the enhanced method described in “Routing 
transactions invoked by START commands” on page 78. However, you cannot use 
the enhanced method to route: 
v   Transactions invoked by the trigger-level on a transient data queue 

 

Chapter 7. CICS transaction routing 69



v   Transactions that are sent over an IPIC connection 
v   Some transactions that are invoked by EXEC CICS START commands.

For these cases, you must use the traditional method. 

Automatic transaction initiation is the process whereby a transaction request made 
internally within a CICS system or systems network leads to the scheduling of the 
transaction. ATI requests result from: 

EXEC CICS START commands 
A START command causes CICS interval control to initiate a transaction 
after a specified period of time (which might be zero) has elapsed. 

Transient data queues 
A transient data queue can be defined so that a transaction is automatically 
initiated when the number of records on the queue reaches a specified 
level.

CICS transaction routing allows an ATI request for a transaction owned by a 
particular CICS system to name a terminal that is owned by another, connected 
system. For example, in Figure 22 on page 71, an application in AOR1 issues a 
START request for transaction TRAA to be attached to terminal PRT1. 

Although the original ATI request occurs in the AOR, it is sent by CICS to the TOR 
for execution. So, in the example, AOR1 sends the START request to TOR1 to be 
executed. In the TOR, the ATI request causes the relay program to be initiated, in 
conjunction with the specified terminal (PRT1 in the example). 

The user transaction in the application-owning region is then accessed in the 
manner described for terminal-initiated transaction routing. Associated with the 
request is an automatic initiate descriptor (AID) that specifies the names of the 
remote transaction (TRAA) and system (AOR1). 

For static transaction routing, the terminal-owning region (TOR1) must find a 
transaction definition that specifies REMOTESYSTEM(AOR1) and 
REMOTENAME(TRAA); if it cannot find the correct definition, the request fails. 

For dynamic transaction routing using the traditional method, when 
DYNAMIC(YES) is coded on the transaction definition, the dynamic routing 
program is invoked but cannot reroute the request, because the remote system 
name is taken from the AID. To find out how to use the ROUTABLE option of the 
transaction definition to specify enhanced routing, see “Routing transactions 
invoked by START commands” on page 78. 
 

 

70 CICS TS for z/OS 4.1: Intercommunication Guide

|



ATI requests are queued in the application-owning region if the link to the 
terminal-owning region is not available, and subsequently in the terminal-owning 
region if the terminal is not available. 

The overall effect is to create a “single-system” view of ATI as far as the 
application-owning region is concerned; the fact that the terminal is remote does 
not affect the way in which ATI appears to operate. 

In the application-owning region, the normal rules for ATI apply. The transaction 
can be initiated from a transient data queue, when the trigger level is reached, or 
on expiry of an interval control start request. Note particularly that, for transient 
data initiation, the transient data queue must be in the same system as the 
transaction. Transaction routing does not enable transient data queue entries to 
initiate remote transactions. 

Shipping terminals for automatic transaction initiation 
A CICS system, CICA, can cause an ATI request to be executed in another CICS 
system, CICB, in several ways. 

For example: 
1.   CICA can function-ship a START request to CICB. 
2.   CICA can function-ship WRITEQ requests for a transient data queue owned by 

CICB, which eventually triggers. 
3.   CICA can instigate routing to a transaction in CICB, which then issues a START 

or writes to a transient data queue.

If the ATI request has a terminal associated with it, CICB searches its resources for 
a definition for that terminal. If it finds that the terminal is remote, it sends the ATI 
request to the system that is specified in the REMOTESYSTEM option of the 
terminal definition. Remember that a terminal-related ATI request is executed in 
the TOR. 

TOR1 AOR1

DEFINE TRANSACTION(TRAA) DEFINE TRANSACTION(TRAA)
REMOTESYSTEM(AOR1)

VDT1 DEFINE TERMINAL(PRT1)
DEFINE TERMINAL(PRT1) REMOTESYSTEM(TOR1)

CICS initiates Shipped EXEC CICS START
VDT2 transaction TRANSID(TRAA)

routing TERMID(PRT1)

Transaction
CICS relay routing

PRT1 transaction TRANSACTION TRAA
Link
established
between PRT1
and TRAA

  

Figure 22. ATI-initiated transaction routing

 

Chapter 7. CICS transaction routing 71



Terminal-not-known condition 
The “terminal-not-known condition” frequently occurs, as the example in this 
section explains, because a terminal-related START command is issued in the 
terminal-owning region and function-shipped to the application-owning region, 
where the terminal is not yet defined. 

Important:  

If you are able to use the enhanced routing method described in “Routing 
transactions invoked by START commands” on page 78, a START command issued 
in a TOR is not function-shipped to the AOR; thus the “terminal-not-known” 
condition does not occur. 

To ensure correct functioning of cross-region ATI, you could define your terminals 
to all the systems on the network that need to use them. However, you cannot do 
this if you are using autoinstall. (For information about using autoinstall, see 
Autoinstall, in the CICS Resource Definition Guide.) Autoinstalled terminals are 
unknown to the system until they log on, and you rely on CICS to ship terminal 
definitions to all the systems where they are needed. (See “Shipping terminal and 
connection definitions” on page 214.) This works when routing from a terminal to 
a remote system, but there are cases where a system cannot process an ATI request, 
because it has not been told the location of the associated terminal. 

The example shown in Figure 23 on page 73 should make this clear: 
1.   The operator at terminal T1 selects the menu transaction M1 on CICA. 
2.   The menu transaction M1 runs and the operator selects a function that is 

implemented by transaction X1 in CICB. 
3.   Transaction M1 issues the command: 

EXEC CICS START 
     TRANSID(X1) 
     TERMID(T1) 

and exits. 
4.   Because X1 is defined as a remote transaction owned by CICB, CICA 

function-ships the START command to CICB. 
5.   CICB now processes the START command and, in doing so, tries to discover 

which region owns T1, because this is the region that has to execute the ATI 
request resulting from the START command. 

6.   Only if a definition of T1, resulting from an earlier routed transaction, is 
present can CICB determine where to send the ATI request. Assuming no such 
definition exists, the interval control program rejects the START request with 
TERMIDERR.

 

 

72 CICS TS for z/OS 4.1: Intercommunication Guide



The global user exits XICTENF and XALTENF:  

You, as user of the system, know how this routing problem could be solved, and 
CICS gives you a way of communicating your solution to the system. The two 
global user exits XICTENF and XALTENF have been provided. 

 XICTENF is driven when interval control processes a START command and 
discovers the associated termid is not defined to the system. XALTENF is driven 
from the terminal allocation program also when the termid is not defined. 

The terminal allocation program schedules requests resulting both from the 
eventual execution of a START command and from the transient data queue trigger 
mechanism. This means that a START command could result in an invocation of 
both exits. 

The program you provide to service one or both of these global user exits has 
access to a parameter list containing this information: 
v   Whether the ATI request resulted from: a START command with data, a START 

command without data, or a transient data queue trigger. 
v   Whether the START command was issued by a transaction that had been the 

subject of transaction routing. 
v   Whether the START command was function-shipped from another region. 
v   The identifier of the transaction to be run. 
v   The identifier of the terminal with which the transaction should run. 
v   The identifier of the terminal associated with the transaction that issued the 

START command, if this was a routed transaction, or the identifier of the 
session, if the command was function-shipped. Otherwise, blanks are returned. 

v   The netname of the last system the START request was shipped from or, if the 
START was issued locally, the netname of the system last transaction-routed 
from. Blanks are returned if no remote system was involved. 

v   The sysid corresponding to the returned netname.

CICA CICB

DEFINE TRANSACTION(M1) DEFINE TRANSACTION(X1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB)

CEDA-installed or no terminals defined
autoinstalled terminal
definition for T1

TRANSACTION Function-shipped CICS Interval
M1 Control Program

EXEC CICS START raises 'TERMIDERR'
TRANSID(X1)
TERMID(T1)

  

Figure 23. Failure of an ATI request in a system where the termid is unknown

 

Chapter 7. CICS transaction routing 73



On exit from the program, you tell CICS whether the terminal exists and, if it does, 
you supply either the netname or the sysid of the TOR. CICS sends the ATI request 
to the region you specify. As a result, the terminal definition is shipped from the 
TOR to the AOR, and transaction routing proceeds normally. 

There is therefore a solution to the problem shown in Figure 23 on page 73. It is 
necessary only to write a small exit program that returns the CICS-supplied 
parameters unchanged and sets the return code for 'netname returned'. 

The events that follow are shown in Figure 24 on page 75: 
1.   The interval control program accepts the START command and signals 

acceptance to the issuing system if this is required. 
2.   After the specified interval has expired, or immediately if no interval was 

specified, the terminal allocation program tries to schedule the ATI request. It 
finds no terminal defined and takes the exit XALTENF, which again supplies 
the required netname. 

3.   The ATI request is shipped to CICA. CICA allocates a relay transaction, 
establishes a transaction routing link to transaction X1 in CICB, and ships a 
copy of the terminal definition for T1 to CICB.

 

 

74 CICS TS for z/OS 4.1: Intercommunication Guide



The example in Figure 24 shows only one of many possible configurations. From 
this elementary example, you can see how to approach a solution for the more 
complex situations that can arise in multiregion networks. 

Resource definition:  

You do not have to be using autoinstalled terminals to make use of the exits 
XICTENF and XALTENF. The technique also works with CEDA-installed terminals, 
if they are defined with SHIPPABLE(YES) specified. 

 It is important that, although there is no need to have all terminal definitions in 
place before you operate your network, all links between systems must be fully 
defined, and remote transactions must be known to the systems that want to use 
them. 

Note: The 'terminal not known' condition can arise in CICS terminal-allocation 
modules during restart, before any global user exit programs have been enabled. If 
you want to intervene here too, you must enable your XALTENF exit program in a 
first-phase PLTPI program (for programming information about PLTPI programs, 

CICA CICB

DEFINE TRANSACTION(M1) DEFINE TRANSACTION(X1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB) no terminals defined

CEDA-installed or
autoinstalled terminal
definition for T1

CICS
Interval Exit
Control program

TRANSACTION Function-shipped Program returns
M1 drives netname

EXEC CICS START XICTENF "CICA"
TRANSID(X1) exit
TERMID(T1)

CICS ATI request CICS Exit
initiates Terminal program
transaction shipped to CICA Allocation returns
routing Program netname

drives "CICA"
XALTENF
exit

Transaction
CICS relay routing
transaction TRANSACTION

link established X1
between T1 and
X1 and terminal
definition for
T1 shipped over copy definition

for terminal T1

  

Figure 24. Resolving a 'terminal not known' condition on a START request

 

Chapter 7. CICS transaction routing 75



see Writing initialization and shutdown programs, in the CICS Customization 
Guide.) This applies to both warm start and emergency start.

Important:  

The XICTENF and XALTENF exits can be used only if there is a direct link 
between the AOR and the TOR. In other words, the sysid or netname that you 
pass back to CICS from the exit program must not be for an indirectly connected 
system. 

The exit program for the XICTENF and XALTENF exits:  

How your exit program identifies the TOR from the parameters supplied by CICS 
can only be decided by reference to your system design. 

 In the simplest case, you would hand back to CICS the netname of the system that 
originated the START request. In a more complex situation, you may decide to give 
each terminal a name that reflects the system on which it resides. 

For programming information about the exit program, see ‘Terminal not known’ 
condition exits XALTENF and XICTENF, in the CICS Customization Guide. A sample 
program is also available in the DFHXTENF member of library 
CICSTS41.CICS.SDFHSAMP. 

Shipping terminals for ATI from multiple TORs 
Consider the following network setup. 
1.   You have an application-owning region that is connected to two or more 

terminal-owning regions (TORs) that use the same, or a similar, set of terminal 
identifiers. 

2.   One or more of the TORs issues EXEC CICS START requests for transactions in 
the AOR. 

3.   The START requests are associated with terminals. 
4.   You are using shippable terminals, rather than statically defining remote 

terminals in the AOR.

Now consider the following scenario: 

Terminal-owning region TORB issues an EXEC CICS START request for transaction 
TRANB, which is owned by region AOR1. It is to be run against terminal T1. Meanwhile, 
terminal T1 on region TORA has been transaction routing to AOR1; a definition of T1 has 
been shipped to AOR1 from TORA. When the START request arrives at AOR1, it is 
shipped to TORA, rather than TORB, for transaction routing from terminal T1. 

Figure 25 on page 77 illustrates what happens. 
 

 

76 CICS TS for z/OS 4.1: Intercommunication Guide



There are two ways to prevent this situation: 
1.   This is the preferred method. 

Use the enhanced routing method described in “Routing transactions invoked 
by START commands” on page 78. A terminal-related START command issued 
in the terminal-owning region is not function-shipped to the AOR; thus it 
cannot be shipped back to the wrong TOR. Instead, the START executes directly 
in the TOR, and the transaction is routed as if it had been initiated from a 
terminal. 
A definition of the terminal is shipped to the AOR, and the autoinstall user 
program is called. Your autoinstall user program can then allocate an alias 
termid in the AOR, to avoid a conflict with the previously installed remote 
definition. Terminal aliases are described in “Terminal aliases” on page 220. For 
information about writing an autoinstall program to control the installation of 
shipped definitions, see the CICS Customization Guide. 

2.   Use this method if you cannot use the enhanced routing method. 
Code YES on the FSSTAFF system initialization parameter in the AOR. This 
ensures that, when a START request is received from a terminal-owning region, 
and a shipped definition for the terminal named on the request is already 
installed in the AOR, the request is always shipped back to a TOR, for routing, 
across the link it was received on, irrespective of the TOR referenced in the remote 
terminal definition. (The only exception to this is if the START request supplies 
a TOR_NETNAME and a remote terminal with the correct TOR_NETNAME is 
located; in which case, the request is shipped to the appropriate TOR.) 
If the TOR to which the START request is returned is not the one referenced in 
the installed remote terminal definition, a definition of the terminal is shipped 
to the AOR, and the autoinstall user program is called. Your autoinstall user 
program can then allocate an alias termid in the AOR, to avoid a conflict with 
the previously installed remote definition. 

TORA

TORB

AOR1

TRANA

TRANB

T1

T1

START shipped to wrong

region for routing fromT1

Transaction routing

Function shippedEXECCICSSTART
TRANSID(TRANB)
TERMID(T1)

Shipped
definition
forT1
onTORA

T2

  

Figure 25. Function-shipped START request started against an incorrect terminal. Because a shipped definition of 
terminal T1 (owned by TORA) is installed on AOR1, the START request received from TORB is shipped to TORA, for 
routing, rather than to TORB.

 

Chapter 7. CICS transaction routing 77



For full details of the FSSTAFF system initialization parameter, see the CICS 
System Definition Guide.

ATI and generic resources 
An AOR can issue an EXEC CICS START request against a terminal that is owned 
by a VTAM generic resource, without knowing the member of the generic resource 
group to which the terminal is currently logged on. 

For details of using ATI with generic resources, see “Using ATI with generic 
resources” on page 137. 

Routing transactions invoked by START commands 
Define a transaction as ROUTABLE(YES) in the requesting region (the region in 
which the START command is issued) to use the "enhanced" method of routing 
transactions that are invoked by EXEC CICS START commands. 

The "enhanced" method supersedes the "traditional" method described in 
“Traditional routing of transactions started by ATI” on page 69. Note, however, 
that the "enhanced" method cannot be used to route a number of transactions: 
v   Transactions invoked by the trigger-level on a transient data queue 
v   Transactions that are sent over an IPIC connection 
v   Some transactions that are invoked by EXEC CICS START commands

For these cases, you must use the "traditional method". 

Advantages of the enhanced method 
There are several advantages in using the enhanced method, where possible, rather 
than the “traditional” method: 

Dynamic routing 
Using the “traditional” method, you cannot route the started transaction 
dynamically. (For example, if the transaction on a terminal-related START 
command is defined as DYNAMIC(YES) in the terminal-owning region, your 
dynamic routing program is invoked for notification only—it cannot route the 
transaction.) 

 Using the enhanced method, you can route the started transaction dynamically. 

Efficiency 
Using the “traditional” method, a terminal-related START command issued in 
a TOR is function-shipped to the AOR that owns the transaction. The request is 
then shipped back again, for routing from the TOR. 

 Using the enhanced method, the two hops to the AOR and back are missed 
out. A START command issued in a TOR executes directly in the TOR, and the 
transaction is routed without delay. 

Simplicity 
Using the “traditional” method, when a terminal-related START command 
issued in a TOR is function-shipped to the AOR that owns the transaction the 
“terminal-not-known” condition may occur if the terminal is not defined in the 
AOR. 

 Using the enhanced method, because a START command issued in a TOR is 
not function-shipped to the AOR, the “terminal-not-known” condition does not 
occur. The START command executes in the TOR directly, and the transaction 

 

78 CICS TS for z/OS 4.1: Intercommunication Guide

|



is routed just as if it had been initiated from a terminal. If the terminal is not 
defined in the AOR, a definition is shipped from the TOR.

How to route transactions started by terminal-related START 
commands 

You can set a number of options on a terminal-related START command that can 
affect the set of regions to which the transaction can be routed. 

Enhanced routing is not supported over IPIC connections. If you attempt to use 
enhanced routing over IPIC, the original routing mechanism is used to route your 
transactions. 

For a transaction started by a terminal-related START command to be eligible for 
the enhanced routing method, all of the following conditions must be met: 
v   The START command must be a member of the subset of eligible START 

commands; that is, it must meet all the following conditions: 
–   The START command specifies the TERMID option, which names the 

terminal associated with the current task. 
–   The principal facility of the task that issues the START command is a 

terminal. The principal facility is not a terminal if, for example, the program 
that issues the START command has a DPL link; in this case, the principal 
facility is the intersystem session. 

–   The principal facility of the task that issues the START command is not a 
surrogate client virtual terminal. 

–   The SYSID option of the START command does not specify the name of a 
remote region; that is, the remote region on which the transaction is to be 
started must not be specified explicitly.

The requesting region and the TOR can be the same region. 
v   The requesting region and the TOR, if they are different, must be connected by 

one of the following links: 
–   An MRO link 
–   An APPC parallel-session link

v   The TOR and the target region must be connected by one of the following links: 
–   An MRO link. 
–   An APPC single- or parallel-session link. If an APPC link is used, at least one 

of the following must be true: 
1.   Terminal-initiated transaction routing has previously taken place over the 

link. 
2.   CICSPlex SM is being used for routing.

v   The transaction definition in the requesting region must specify 
ROUTABLE(YES). 

v   If the requesting region and the TOR are different, the transaction definition in 
the requesting region must not specify the REMOTESYSTEM option. If the 
requesting region and the TOR are the same region, you may use 
REMOTESYSTEM in the transaction definition for static routing. 

v   If the transaction is to be routed dynamically, the transaction definition in the 
TOR must specify DYNAMIC(YES). 

Important: When considering which START-initiated transactions are candidates 
for dynamic routing, you must take particular care if the START command 
specifies any of the following options: 

 

Chapter 7. CICS transaction routing 79

|
|
|



–   AT, AFTER, INTERVAL, or TIME; that is, there is a delay before the START is 
run. 

–   QUEUE. 
–   REQID. 
–   RTERMID. 
–   RTRANID.

START commands issued in an AOR 
If a terminal-related START command is issued in an AOR, it is shipped to the 
TOR that owns the terminal named in the TERMID option. The START executes in 
the TOR. 

Static routing for commands issued in the AOR:  

Static routing takes place if the transaction definition in the application-owning 
region (AOR) specifies ROUTABLE(YES) and the transaction definition in the 
terminal-owning region (TOR) specifies DYNAMIC(NO). Therefore, the dynamic 
routing program is not called. 

 If the transaction is eligible for enhanced routing, it is routed to the AOR named in 
the REMOTESYSTEM option of the transaction definition in the TOR. If 
REMOTESYSTEM is not specified, the transaction runs locally, in the TOR. 

If the transaction is not eligible for enhanced routing, it is handled in the usual 
way, as described in “Traditional routing of transactions started by ATI” on page 
69; that is, CICS tries to route it back to the originating AOR for execution. If the 
REMOTESYSTEM option of the transaction definition in the TOR names a region 
other than the originating AOR, the request fails. 

Figure 26 on page 81 shows the requirements for using the enhanced method to 
statically route a transaction that is initiated by a terminal-related START command 
issued in an AOR. 
 

 

80 CICS TS for z/OS 4.1: Intercommunication Guide



The requesting region and the TOR are connected by an MRO or APPC 
parallel-session link. The TOR and the target region are connected by an MRO or 
APPC (single- or parallel-session) link. The transaction definition in the requesting 
region specifies ROUTABLE(YES). The transaction definition in the TOR specifies 
DYNAMIC(NO). The REMOTESYSTEM option names the AOR to which the 
transaction is to be routed. 

Dynamic routing for commands issued in the AOR:  

Dynamic routing takes place if the transaction definition in the application-owning 
region (AOR) specifies ROUTABLE(YES) and the transaction definition in the 
terminal-owning region (TOR) specifies DYNAMIC(YES). Therefore, the dynamic 
routing program is invoked in the TOR. 

 Dynamic routing of transactions called by terminal-related START commands uses 
the “hub” routing model described in “The “hub” model” on page 60. 

If the transaction is eligible for enhanced routing, the routing program can reroute 
the transaction to an alternative AOR; that is, to an AOR other than that in which 
the START was issued. 

If the transaction is ineligible for enhanced routing, the dynamic routing program 
is called for notification only; it cannot reroute the transaction. The transaction is 
handled in the usual way; that is, it is routed back to the originating AOR for 
execution. 

Figure 27 on page 82 shows the requirements for dynamically routing a transaction 
that is initiated by a terminal-related START command issued in an AOR. 
 

CICS TS 1.3 or later

AOR 1
TRAN1
ROUTABLE(YES)

Requesting region
START issued

MRO
or
APPC
parallel-sessions

CICS TS 1.3 or later

TOR

Target region

AOR 2 AOR 3
CICS TS 1.3

or later

AOR 4

Routing region
START executed

TRAN1
DYNAMIC(NO)
REMOTE

SYSTEM(AOR3)

MRO or APPC single- or parallel-sessions

T1

  

Figure 26. Static routing of a terminal-related START command issued in an AOR, using the enhanced method

 

Chapter 7. CICS transaction routing 81



The requesting region and the TOR are connected by an MRO or APPC 
parallel-session link. The TOR and the target region are connected by an MRO or 
APPC (single- or parallel-session) link. The transaction definition in the requesting 
region specifies ROUTABLE(YES). The transaction definition in the TOR specifies 
DYNAMIC(YES). 

START commands issued in a TOR 
A terminal-related START command that is issued in a TOR can be statically or 
dynamically routed. 

Static routing of terminal-related START commands:  

Transactions that are statically routed specify ROUTABLE(YES) and 
DYNAMIC(NO) in the transaction definition in the terminal-owning region, so that 
the dynamic routing program is not called. 

 If the transaction is eligible for enhanced routing, the following steps take place: 
1.   The START command runs in the TOR. 
2.   The transaction is routed to the AOR named in the REMOTESYSTEM option of 

the transaction definition. If REMOTESYSTEM is not specified, the transaction 
runs locally, in the TOR.

If the transaction is not eligible for enhanced routing, the START request is 
handled in the usual way, described in “Traditional routing of transactions started 
by ATI” on page 69; that is, it is function-shipped to the AOR named in the 
REMOTESYSTEM option of the transaction definition. If REMOTESYSTEM is not 
specified, the START request runs locally in the TOR. 

CICS TS 1.3 or later

AOR 1

TRAN1
ROUTABLE(YES)

Requesting region
START issued

MRO
or
APPC
parallel-sessions

CICS TS 1.3 or later

TOR

Target region

AOR 2
CICS TS 1.3

or later

AOR 3 AOR 4

Routing region
START executed
Dynamic routing program runs

TRAN1
DYNAMIC(YES)

MRO or APPC single- or parallel- sessions

T1

  

Figure 27. Dynamic routing of a terminal-related START command issued in an AOR

 

82 CICS TS for z/OS 4.1: Intercommunication Guide



Figure 28 shows the requirements for using the enhanced method to statically route 
a transaction that is initiated by a terminal-related START command issued in a 
TOR. 
 

The TOR and the target region are connected by an MRO or APPC (single or 
parallel session) link. The transaction definition in the TOR specifies 
DYNAMIC(NO) and ROUTABLE(YES). The REMOTESYSTEM option names the 
AOR to which the transaction is to be routed. 
Related concepts 

“How to route transactions started by terminal-related START commands” on page 
79 
You can set a number of options on a terminal-related START command that can 
affect the set of regions to which the transaction can be routed.

Dynamic routing of terminal-related START commands:  

Transactions that are dynamically routed specify ROUTABLE(YES) and 
DYNAMIC(YES) in the transaction definition in the terminal-owning region, so 
that the dynamic routing program is called. 

 Dynamic routing of transactions started by terminal-related START commands use 
the hub routing model. 

If the transaction is eligible for enhanced routing, the following steps take place: 
1.   The START command runs in the TOR. 
2.   The routing program can route the transaction.

If the transaction is not eligible for enhanced routing, the dynamic routing 
program is started for notification only, because it cannot route the transaction. The 
START request is handled in the usual way; that is, it is function-shipped to the 

CICS TS 1.3 or later

TOR

TRAN1
DYNAMIC(NO)
ROUTABLE(YES)
REMOTE

SYSTEM(AOR3)

Target region

AOR 1 AOR 2
CICS TS 1.3

or later

AOR 3 AOR 4

Requesting region
START issued

Routing region
START executed

MRO or APPC single- or parallel-sessions

T1

  

Figure 28. Static routing of a terminal-related START command issued in a TOR, using the enhanced method

 

Chapter 7. CICS transaction routing 83



AOR named in the REMOTESYSTEM option of the transaction definition in the 
TOR. If REMOTESYSTEM is not specified, the START request runs locally in the 
TOR. 

Figure 29 shows the requirements for dynamically routing a transaction that is 
initiated by a terminal-related START command issued in a TOR. 
 

The TOR and the target region are connected by an MRO or APPC (single or 
parallel session) link. The transaction definition in the TOR specifies both 
DYNAMIC(YES) and ROUTABLE(YES). 
Related concepts 

“The “hub” model” on page 60
The “hub” is the model that has traditionally been used with CICS dynamic 
transaction routing.

Non-terminal-related START commands 
For a non-terminal-related START request to be eligible for enhanced routing, all of 
the following conditions must be met. 
v   The requesting region and the target region are connected in one of the 

following ways: 
–   An MRO link. 
–   An APPC single- or parallel-session link. If an APPC link is used, and the 

distributed routing program is called on the target region, CICSPlex SM must 
be used for routing.

v   The transaction definition in the requesting region specifies ROUTABLE(YES).

In addition, if the request is to be routed dynamically, the following conditions 
apply: 
v   The transaction definition in the requesting region must specify 

DYNAMIC(YES). 

CICS TS 1.3 or later

TOR
TRAN1
DYNAMIC(YES)
ROUTABLE(YES)

Target region

AOR 1 AOR 2
CICS TS 1.3

or later

AOR 3 AOR 4

Requesting region
START issued

Routing region
START executed
Dynamic routing program runs

MRO or APPC single- or parallel-sessions

T1

  

Figure 29. Dynamic routing of a terminal-related START command issued in a TOR

 

84 CICS TS for z/OS 4.1: Intercommunication Guide



v   The SYSID option of the START command must not specify the name of a 
remote region. (That is, the remote region on which the transaction is to be 
started must not be specified explicitly.)

Note: When considering which START-initiated requests are candidates for 
dynamic routing, you must take particular care if the START specifies any of the 
following options: 
v   AT, AFTER, INTERVAL(non-zero), or TIME. That is, there is a delay before the 

START is performed. 
If a delay occurs, the interval control element (ICE) created by the START 
request is kept in the requesting region with a transaction ID of CDFS. The 
CDFS transaction retrieves any data specified by the user and reissues the 
START request without an interval. The request is routed when the ICE expires, 
based on the state of the transaction definition and the sysplex at that moment. 

v   QUEUE. 
v   REQID. 
v   RTERMID. 
v   RTRANID.

You must understand how these options are being used; whether, for example, 
they affect the set of regions to which the request can be routed. 

Static routing 
The transaction definition in the requesting region specifies ROUTABLE(YES) and 
DYNAMIC(NO). If the START request is eligible for enhanced routing, the 
distributed routing program (the program specified on the DSRTPGM system 
initialization parameter) is invoked for notification of the statically-routed request. 

Note:  

1.   The distributed routing program differs from the dynamic routing program, in 
that it is invoked—for eligible non-terminal-related START requests where the 
transaction is defined as ROUTABLE(YES)—even when the transaction is 
defined as DYNAMIC(NO). The dynamic routing program is never invoked for 
transactions defined as DYNAMIC(NO). This difference in design means that 
you can use the distributed routing program to assess the effect of 
statically-routed requests on the overall workload. 

2.   If the request is ineligible for enhanced routing, the distributed routing 
program is not invoked.

Dynamic routing 

Dynamic routing models:  

Dynamic routing of non-terminal-related START requests uses the distributed 
routing model described in “The distributed model” on page 61. 

The transaction definition in the requesting region specifies ROUTABLE(YES) and 
DYNAMIC(YES). If the request is eligible for enhanced routing, the distributed 
routing program is invoked for routing. The START request is function-shipped to 
the target region returned by the routing program. 

Note:  

1.   If the request is ineligible for enhanced routing, the distributed routing 
program is not invoked. Unless the SYSID option specifies a remote region 

 

Chapter 7. CICS transaction routing 85



explicitly, the START request is function-shipped to the AOR named in the 
REMOTESYSTEM option of the transaction definition in the requesting region; 
if REMOTESYSTEM is not specified, the START executes locally, in the 
requesting region. 

2.   If the request is eligible for enhanced routing, but the SYSID option of the 
START command names a remote region, the distributed routing program is 
invoked for notification only—it cannot route the request. The START executes 
on the remote region named on the SYSID option. 

3.   If you intend to route from CICS Transaction Server for z/OS, Version 4 
Release 1 to a CICS Transaction Server for OS/390, Version 1 Release 3 region 
(or vice versa), you must ensure that the PTF for CICS APAR PQ 75814 is 
applied to CICS Transaction Server for OS/390, Version 1 Release 3. 
If you use CICSPlex SM for routing, the PTFs for each of the following 
CICSPlex SM APARs must be applied to each relevant CICSPlex SM release: 
CICSPlex SM Version 1 Release 4 

PQ80891 
CICSPlex SM Version 2 Release 2 

PQ80893 
CICSPlex SM Version 2 Release 3 

PQ81235

Canceling interval control requests:  

To cancel a previously-issued START, DELAY, or POST interval control request, 
you use the CANCEL command. 

 About this task 

The REQID option specifies the identifier of the request to be canceled. If the 
request is due to execute on a remote region, you can use the SYSID option to 
specify that the CANCEL command is to be shipped to that region. 

START and DELAY requests can be canceled only before any interval specified on 
the request has expired. If a START request is dynamically routed, it is kept in the 
local region until the interval expires, and can therefore be canceled by a 
locally-issued CANCEL command on which the SYSID option is unnecessary. 
However, in a distributed routing environment (in which each region can be both a 
requesting region and a target region), there may be times when you have no way 
of knowing to which region to direct a CANCEL command. For example, you 
might want to cancel a DELAY request which could have been issued on any one 
of a set of possible regions. To resolve a situation like this: 
1.   Issue a CANCEL command on which the REQID option specifies the identifier 

of the request to be canceled, and the SYSID option is not specified. The 
command executes locally. 

2.   Use an XICEREQ global user exit program based on the CICS-supplied sample 
program, DFH$ICCN. Your exit program is invoked before the CANCEL 
command is executed. DFH$ICCN: 
a.   Checks: 

1)   That it has been invoked for a CANCEL command. 
2)   That the SYSID option was not specified on the command. 
3)   That the identifier of the request to be canceled does not begin with 

'DF'. ('DF' indicates a request issued internally by CICS.) 

 

86 CICS TS for z/OS 4.1: Intercommunication Guide



4)   That the name of the transaction that issued the CANCEL command 
does not begin with 'C'—that is, that the transaction is not a CICS 
internal transaction, nor a CICS-supplied transaction such as CECI.

If one or more of these conditions are not met—for example, if it was 
invoked for a RETRIEVE command—DFH$ICCN does nothing and returns. 

b.   Instructs CICSPlex SM to: 
1)   Search every CICS region that it knows about for an interval control 

request with the identifier (REQID) specified on the CANCEL command. 
2)   On each region, cancel the first request (with the specified identifier) 

that it finds. Note that: 
v   Requests may be canceled on more than one region. 
v   If a particular region contains more than one request with the 

specified identifier, only the first request found by CICSPlex SM is 
canceled. 

v   You must ensure that CICSPlex SM has UPDATE access to the 
transaction ID of the transaction associated with the CANCEL request.

Note: For full details of DFH$ICCN's processing, see the comments in the 
sample program.

For details of the CANCEL command, see CANCEL, in the CICS Application 
Programming Reference. For general information about how to write an XICEREQ 
global user exit program, see Interval control EXEC interface program exits, in the 
CICS Customization Guide. 

Allocation of remote APPC connections 
A transaction running in the application-owning region can issue an ALLOCATE 
command, to obtain a session to an APPC terminal or connection that is owned by 
another system. 

A relay program is started in the terminal-owning region to convey requests 
between the transaction and the remote APPC system or terminal. 

Transaction routing with APPC devices 
An APPC device presents a data interface to CICS that is an implementation of the 
APPC architecture. The APPC session linking it to a transaction represents the 
principal facility of the transaction rather than the device itself. The transaction 
converses across the link with a transaction program within the device, which may 
be a hard-coded terminal device, a programmable system, or even another CICS 
system. 

There is no essential difference between transaction routing with APPC devices 
and transaction routing with any other terminals. However, remember these points: 
v   APPC devices have their own “intelligence”. They can interpret operator input 

data or the data received from CICS in any way the designer chooses. 
v   There are no error messages from CICS. The APPC device receives indications 

from CICS, which it may translate into text for a human operator. 
v   CICS does not directly support pseudoconversational operation for APPC 

devices, but the device itself could possibly be programmed to produce the same 
effect. 

v   Basic mapping support (BMS) has no meaning for APPC devices. 

 

Chapter 7. CICS transaction routing 87



v   APPC devices can be linked by more than one session to the host system. 
v   TCTUAs will be shipped across the connection for APPC single-session 

terminals, but not when the principal facility is an APPC parallel session.

You use the APPC application program interface to communicate with APPC 
devices. For relevant introductory information, see Chapter 9, “Distributed 
transaction processing,” on page 105. 

Allocating an alternate facility 
One of the design criteria in transaction routing is that, if a transaction running in 
a single-CICS environment is transferred to an alternative, linked system, there 
should be no loss of function if the transaction now has to be routed to the original 
terminal. 

Because an APPC device can have more than one session, it is possible, in the 
single-CICS case, for a transaction to acquire further sessions to the same device 
(but to different tasks) by using the ALLOCATE command. Each session thus 
acquired becomes an alternate facility to the transaction. Sessions can also be 
established to other terminals or systems. 

Similarly, transaction routing allows any transaction to acquire an alternate facility 
to an APPC device by using ALLOCATE, even though there are intermediate 
systems between the APPC device and the AOR. For this, the AOR needs a remote 
version of the APPC link definition that is installed in the TOR. Perhaps you can 
rely on this having been shipped to the AOR by a transaction routing operation. If 
not, you will have to install it expressly. You cannot use the user exits XICTENF 
and XALTENF as an aid to routing the alternate facility. 

The system as a terminal 
Because the resource definitions for APPC devices can take the CONNECTION 
and SESSIONS form, it is easy to confuse them with the definitions for the 
intersystem links. 

It is important to remember that definitions for the intersystem links are either 
direct or indirect, while those for APPC devices are direct in the TOR and remote 
in the AOR and any intermediate systems. Note also that remote CONNECTION 
definitions do not need corresponding SESSIONS definitions. 

Figure 30 on page 89 shows a network of three CICS systems chained together, of 
which the first is linked to an APPC terminal. 
 

 

88 CICS TS for z/OS 4.1: Intercommunication Guide



Note:  

1.   The remote link definitions for A could either be defined by the user or be 
shipped from system B during transaction routing. 

2.   The indirect links are not necessary to this example, but are included to 
complete all possible linkage combinations. See “Defining indirect links for 
transaction routing” on page 182. 

3.   The links B-C and C-D may be either MRO or APPC.

System A (or any one of the four systems) can take on the role of a terminal. This 
is a technique that allows a pair of transactions to converse across intermediate 
systems. Consider this sequence of events: 
1.   A transaction running in A allocates a session on the link to B and makes an 

attach request for a particular transaction. 
2.   B sees that the transaction is on C, and initiates the relay program in 

conjunction with the principal facility represented by the link definition to A. 
3.   The attach request arrives at C together with details of the terminal; that is, B's 

link to A. C builds a remote definition of the terminal and goes to attach the 
transaction. 

4.   C also finds the transaction remote and defined as owned by D. C initiates the 
relay program, which tries to attach the transaction in D. 

5.   D also builds a remote definition of B's link to A, and attaches the local 
transaction. 

6.   The transaction in A that originated the attach request can now communicate 
with the target transaction through the transaction routing mechanism.

Note these points: 

APPC terminal Terminal-owning Intermediate Application-owning
(system) region (TOR) system region (AOR)

A B C D

Direct link Direct link Direct link
defined to A defined to D defined to C

Direct link Direct link Indirect
defined to C defined to B link defined

to B via C

Indirect Remote link Remote link
link defined definition definition
to D via C for A for A

Transaction Transaction Transaction
defined as defined as defined on
owned by C owned by D system D

  

Figure 30. Transaction routing to an APPC terminal across daisy-chained systems

 

Chapter 7. CICS transaction routing 89



v   APPC terminals are always shippable. There is no need to define them as such. 
v   Attach requests on other sessions of the A-B link could be routed to other 

systems. 
v   Neither partner to a conversation made possible by transaction routing knows 

where the other resides, although the routed-to transaction can find out the 
TERMINAL/CONNECTION name by using the EXEC CICS ASSIGN 
PRINSYSID command. This name can be used to allocate one or more additional 
sessions back to A. 

v   The transaction in D could start with an EXEC CICS (GDS) EXTRACT PROCESS 
command, but it is more usual for the transaction to start with an EXEC CICS 
(GDS) RECEIVE command.

The relay program 
When a terminal operator enters a transaction code for a transaction that is in a 
remote system, a transaction is attached in the TOR that executes a CICS-supplied 
program known as the relay program. This program provides the communication 
mechanism between the terminal and the remote transaction. 

Although CICS determines the program to be associated with the transaction, the 
user's definition for the remote transaction determines the attributes. These are 
usually those of the “real” transaction in the remote system. 

Because it executes the relay program, the transaction is called the relay 
transaction. 

When the relay transaction is attached, it acquires an interregion or intersystem 
session and sends a request to the remote system to cause the “real” user 
transaction to be started. In the application-owning region, the terminal is 
represented by a control block known as the surrogate TCTTE. This TCTTE 
becomes the transaction's principal facility, and is indistinguishable by the 
transaction from a “real” terminal entry. However, if the transaction issues a 
request to its principal facility, the request is intercepted by the CICS terminal 
control program and shipped back to the relay transaction over the interregion or 
intersystem session. The relay transaction then issues the request or output to the 
terminal. In a similar way, terminal status and input are shipped through the relay 
transaction to the user transaction. 

Automatic transaction initiation (ATI) is handled in a similar way. If a transaction 
that is initiated by ATI requires a terminal that is connected to another system, a 
request to start the relay transaction is sent to the terminal-owning region. When 
the terminal is free, the relay transaction is connected to it. 

The relay transaction remains in existence for the life of the user transaction and 
has exclusive use of the session to the remote system during this period. When the 
user's transaction terminates, an indication is sent to the relay transaction, which 
then also terminates and frees the terminal. 

Basic mapping support (BMS) 
The mapping operations of BMS are performed in the system on which the user's 
transaction is running; that is, in the application-owning region. The mapped 
information is routed between the terminal and this transaction via the relay 
transaction, as for terminal control operations. 

 

90 CICS TS for z/OS 4.1: Intercommunication Guide



For BMS page building and routing requests, the pages are built and stored in the 
application-owning region. When the logical message is complete, the pages are 
shipped to the terminal-owning region (or regions, if they were generated by a 
routing request), and deleted from the application-owning region. Page retrieval 
requests are processed by a BMS program running in the system to which the 
terminal is connected. 

BMS message routing to remote terminals and operators 
You can use the BMS ROUTE command to route messages to remote terminals. 

For programming information about the BMS ROUTE command, see ROUTE, in 
the CICS Application Programming Reference. You cannot, however, route a message 
to a selected remote operator or operator class unless you also specify the terminal 
at which the message is to be delivered. 

In all cases, the remote terminal must be defined in the system that issues the 
ROUTE command (or a shipped terminal definition must already be available; see 
“Shipping terminal and connection definitions” on page 214). Note that the facility 
described in “Shipping terminals for automatic transaction initiation” on page 71 
does not apply to terminals addressed by the ROUTE command. 

 Table 2. BMS message routing to remote terminals and operators 

LIST entry OPCLASS Result 

None specified Not specified 
The message is routed to all the 
remote terminals defined in the 
originating system. 

Entries specifying a terminal but 
not an operator 

Not specified 
The message is routed to the 
specified remote terminal. 

Entries specifying a terminal but 
not an operator 

Specified 
The message is delivered to the 
specified remote terminal when an 
operator with the specified 
OPCLASS is signed on. 

None specified Specified 
The message is not delivered to 
any remote operator. 

Entries specifying an operator but 
not a terminal 

(Ignored) 
The message is not delivered to the 
remote operator. 

Entries specifying both a terminal 
and an operator 

(Ignored) 
The message is delivered to the 
specified remote terminal when the 
specified operator is signed on.

  

Using the routing transaction, CRTE 
The routing transaction, CRTE, is a CICS-supplied transaction used by a terminal 
operator to call transactions that are owned by a connected CICS system. 

CRTE can be used from any 3270 display device. 

To use CRTE, the terminal operator enters: 
  CRTE SYSID=xxxx  [TRPROF={DFHCICSS|profile_name}] 

 

Chapter 7. CICS transaction routing 91



where: 
v   xxxx is the name of the CONNECTION or the first four characters of the 

IPCONN resource that defines the connection to the remote system 
v   profile_name is the name of the profile to be used for the session with the remote 

system

See “Defining communication profiles” on page 229 for more information about 
defining profiles. The transaction then indicates that a routing session has been 
established, and the user enters input of the form: 
  yyyyzzzzzz... 

where yyyy is the name by which the required remote transaction is known on the 
remote system, and zzzzzz... is the initial input to that transaction. Subsequently, 
the remote transaction can be used as if it had been defined locally and called in 
the ordinary way. All further input is directed to the remote system until the 
operator terminates the routing session by entering CANCEL. 

In secure systems, operators are typically required to sign on before they can start 
transactions. The first transaction that is called in a routing session is therefore 
usually the sign-on transaction CESN; that is, the operator signs on to the remote 
system. 

Although the routing transaction is implemented as a pseudoconversational 
transaction, the terminal from which it is called is held by CICS until the routing 
session ends. Any ATI requests that name the terminal are therefore queued until 
the CANCEL command is issued. 

The CRTE facility is particularly useful for starting the master terminal transaction, 
CEMT, on a particular remote system. It avoids installing a definition of the remote 
CEMT in the local system. CRTE is also useful for testing remote transactions 
before final installation. 

System programming for transaction routing 
You have to perform the following operations to implement transaction routing in 
your installation. 

About this task 

Procedure 
1.   Install MRO or ISC support, or both. 
2.   Define MRO or ISC links between the systems that are to be connected, as 

described in Chapter 13, “How to define connections to remote systems,” on 
page 147. 

3.   Define the terminals and transactions that will participate in transaction 
routing, as described in Chapter 16, “Defining remote resources,” on page 203. 

4.   Ensure that the local communication profiles, transactions, and programs 
required for transaction routing are defined and installed on the local system, 
as described in Chapter 17, “Defining local resources,” on page 229. 

5.   If you want to use dynamic transaction routing, customize the supplied 
dynamic routing program, DFHDYP, or write your own version. For 
programming information about how to do this, see the CICS Customization 
Guide. 

 

92 CICS TS for z/OS 4.1: Intercommunication Guide



6.   If you want to route to shippable terminals from regions where those terminals 
might be 'not known', code and enable the global user exits XICTENF and 
XALTENF. For programming information about coding these exits, see the CICS 
Customization Guide.

Intersystem queuing 
If the link to a remote region is established, but there are no free sessions available, 
transaction routing requests may be queued in the issuing region. Performance 
problems can occur if the queue becomes excessively long. 

For guidance information about controlling intersystem queues, see Chapter 24, 
“Intersystem session queue management,” on page 279. 

 

Chapter 7. CICS transaction routing 93



94 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 8. CICS distributed program link 

This chapter describes CICS distributed program link (DPL). 

It contains: 
v   “Overview of DPL” 
v   “Statically routing DPL requests” on page 96 
v   “Dynamically routing DPL requests” on page 99 
v   “Limitations of DPL server programs” on page 102 
v   “Intersystem queuing” on page 102 
v   “Examples of DPL” on page 103.

Overview of DPL 
CICS distributed program link enables CICS application programs to run programs 
residing in other CICS regions by shipping program-control LINK requests. 

An advantage of DPL is that an application can be written without knowledge of 
the location of the requested programs; the application uses program-control LINK 
commands in the usual way. Entries in the CICS program definition tables usually 
specify that the named program is not in the local region (client region), but in a 
remote region (server region). 

An illustration of a DPL request is shown in Figure 31 on page 96. In this diagram, 
a program (the client program) running in CICA issues a program-control LINK 
command for a program called PGA (the server program). From the installed 
program definitions, CICS discovers that the PGA program is owned by a remote 
CICS system called CICB. CICS changes the LINK request into a suitable 
transmission format, and then ships it to CICB to run. 

In CICB, the mirror transaction (described in Chapter 4, “CICS function shipping,” 
on page 33) is attached. The mirror program re-creates the original request, issues 
the request on CICB, and, when the server program has run to completion, returns 
any communication-area data to CICA. 
 

 

© Copyright IBM Corp. 1977, 2011 95



The CICS recovery and restart facilities enable resources in remote regions to be 
updated and ensure that, when the client program reaches a sync point, any mirror 
transactions that are updating protected resources also take a sync point, so that 
changes to protected resources in remote and local systems are consistent. The 
CSMT transient data queue is notified of any failures in this process, so that 
suitable corrective action can be taken, whether manually or by user-written code. 

A client program can run in a CICS intercommunication environment and use DPL 
without any knowledge of the location of the server program. The location of the 
server program is communicated to CICS in one of two ways. DPL requests can be 
routed to the server region either statically or dynamically. 

Provided that both the client and the server regions are CICS TS for z/OS, Version 
3.2 or later, DPL is supported over IPIC connections, as well as over MRO and ISC 
over SNA connections. Support for DPL over TCP/IP is equivalent to that for DPL 
over MRO and DPL over SNA; for example, both two-phase commit and 
containers are supported. 

If both an IPIC connection and an ISC over SNA connection exist between two 
CICS regions, and both have the same name, the IPIC connection takes precedence. 
That is, if remote region CICB is defined by both an IPCONN definition and a 
CONNECTION definition, CICS uses the IPCONN definition. However, if the 
IPCONN is not acquired but is in service, the ISC over SNA connection is used. 

Statically routing DPL requests 
Static routing means that the location of the server program is specified at design 
time, rather than at run-time. DPL requests for a particular remote program are 
always routed to the same server region. Typically, when static routing is used, the 
location of the server program is specified in the installed program resource 
definition. (Details are given in “Defining remote resources for DPL” on page 208.) 

The program resource definition can also specify the name of the server program 
as it is known on the resource system, if it is different from the name by which it 
is known locally. When the server program is requested by its local name, CICS 
substitutes the remote name before sending the request. This facility is particularly 
useful when a server program exists with the same name on more than one 
system, but performs different functions depending on the system on which it is 
located. Consider, for example, a local system CICA and two remote systems CICB 

CICS mirror
transaction
(issues LINK
command and
passes back
commarea)

.
EXEC CICS LINK
PROGRAM ( 'PGA' )
COMMAREA ( ... )
.
.

DEFINE
PROGRAM ( 'PGA' )
REMOTESYSTEM ( CICB )

PROGRAM ( 'PGA' )
DEFINE

CICA CICB

IPIC, ISC or MRO

session

  

Figure 31. Distributed program link

 

96 CICS TS for z/OS 4.1: Intercommunication Guide

|
|



and CICC. A program named PG1 resides in both CICB and CICC. These two 
programs are to be defined in CICA, but they have the same name. Two 
definitions are needed, so a local alias and a REMOTENAME have to be defined 
for at least one of the programs. The definitions in CICA could look like this: 
DEFINE PROGRAM(PG1) REMOTESYSTEM(CICB) ... 
DEFINE PROGRAM(PG99) REMOTENAME(PG1) REMOTESYSTEM(CICC) ... 

Note: Although doing so may limit the client program's independence, the client 
program can name the remote system explicitly by using the SYSID option on the 
LINK command. If this option names a remote system, CICS routes the request to 
that system unconditionally. If the value of the SYSID option is “hard-coded”—that 
is, it is not deduced, from a range of possibilities, at run-time—this method is 
another form of static routing. 

The local system can also be specified on the SYSID option. This means that the 
decision whether to link to a remote server program or a local one can be taken at 
run-time. This approach is a simple form of dynamic routing. 

In the client region (CICA in Figure 32 on page 98), the command-level EXEC 
interface program determines that the requested server program is on another 
system (CICB in the example). It therefore calls the transformer program to 
transform the request into a form suitable for transmission (in the example, line (2) 
indicates this). As indicated by line (3) in the example, the EXEC interface program 
then calls on the intercommunication component to send the transformed request 
to the appropriate connected system. 

Using the mirror transaction 
The intercommunication component uses CICS terminal-control facilities to send 
the request to the mirror transaction. The request to a particular server region 
causes the communication component in the client region to precede the formatted 
request with the identifier of the appropriate mirror transaction to be attached in 
the server system. 

Controlling access to resources, accounting for system usage, performance tuning, 
and establishing an audit trail can all be made easier if you use a user-specified 
name for the mirror transaction initiated by any given DPL request. This 
transaction name must be defined in the server region as a transaction that invokes 
the mirror program DFHMIRS. It is worth noting that defining user transactions to 
invoke the mirror program gives you the freedom to specify appropriate values for 
all the other options on the transaction resource definition. To initiate any 
user-defined mirror transaction, the client program specifies the transaction name 
on the LINK request. Alternatively, the transaction name can be specified on the 
TRANSID option of the program resource definition. 
 

 

Chapter 8. CICS distributed program link 97



As line (4) in Figure 32 shows, a mirror transaction uses the transformer program 
DFHXFP to decode the formatted link request. The mirror then executes the 
corresponding command, thereby linking to the server program PGA (5). When the 
server program issues the RETURN command (6), the mirror transaction uses the 
transformer program to construct a formatted reply (7). The mirror transaction 
returns this formatted reply to the client region (8). In that region (CICA in the 
example), the reply is decoded, again using the transformer program (9), and used 
to complete the original request made by the client program (10). 

The mirror transaction, which is always long-running for DPL, suspends after 
sending its communications area. The mirror transaction does not terminate until 
the client program issues a syncpoint request or terminates successfully. 

When the client program issues a syncpoint request, or terminates successfully, the 
intercommunication component sends a message to the mirror transaction that 
causes it also to issue a syncpoint request and terminate. The successful syncpoint 
by the mirror transaction is indicated in a response sent back to the client region, 
which then completes its syncpoint processing, so committing changes to any 
protected resources. 

The client program may link to server programs in any order, without being 
affected by the location of server programs (they could all be in different server 
regions, for example). When the client program links to server programs in more 
than one server region, the intercommunication component invokes a mirror 
transaction in each server region to execute link requests for the client program. 
Each mirror transaction follows the above rules for termination, and when the 
application program reaches a syncpoint, the intercommunication component 
exchanges syncpoint messages with any mirror transactions that have not yet 
terminated. 

Using global user exits to redirect DPL requests 
Two global user exits can be invoked during DPL processing. 

CICA CICB
DEFINE PROGRAM(PGA) DEFINE PROGRAM(PGA) ...

REMOTESYSTEM(CICB) ... ...

Transaction Mirror
AAAA: transaction

...
EXEC CICS LINK
PROGRAM('PGA')

...
(1)

(3) (5) (4)
Programs Program PGA: (6)
DFHEIP, (8) (7)

(10) DFHEPC, ...
DFHISP

EXEC CICS
(2) RETURN ...

(9)

Transformer Transformer
program DFHXFP program DFHXFP

  

Figure 32. The transformer program and the mirror in DPL

 

98 CICS TS for z/OS 4.1: Intercommunication Guide



About this task 
v   If it is enabled, XPCREQ is invoked on entry to the CICS program control 

program, before a link request is processed. For DPL requests, it is invoked on 
both sides of the link; that is, in both the client and server regions. 

v   If it is enabled, XPCREQC is invoked after a link request has completed. For 
DPL requests, it is invoked in the client region only.

XPCREQ and XPCREQC can be used for a variety of purposes. You could, for 
example, use them to route DPL requests to different CICS regions, thereby 
providing a simple load balancing mechanism. However, a better way of doing this 
is to use the CICS dynamic routing program—see “Dynamically routing DPL 
requests.” 

For programming information about writing XPCREQ and XPCREQC global user 
exit programs, see Program control program exits, in the CICS Customization Guide. 

Dynamically routing DPL requests 
Dynamic routing means that the location of the server program is decided at 
run-time, rather than at design time. DPL requests for a particular remote program 
may be routed to different server regions. For example, if you have several cloned 
application-owning regions, you may want to use dynamic routing to balance the 
workload across the regions. 

Dynamic routing models:  

Dynamic routing of DPL requests received from outside CICS uses the “hub” 
routing model described in “The “hub” model” on page 60. 

Dynamic routing of CICS-to-CICS DPL requests uses the distributed routing model 
described in “The distributed model” on page 61. Note, however, that it is the 
dynamic routing program, not the distributed routing program, that is invoked for 
routing CICS-to-CICS DPL requests. 

For eligible DPL requests, a user-replaceable program called the dynamic routing 
program is invoked. (This is the same dynamic routing program that is invoked for 
transactions defined as DYNAMIC—see “Dynamic transaction routing” on page 
67.) The routing program selects the server region to which the program-link 
request is shipped. 

The default dynamic routing program, supplied with CICS, is named DFHDYP. 
You can modify the supplied program, or replace it with one that you write 
yourself. You can also use the DTRPGM system initialization parameter to specify 
the name of the program that is invoked for dynamic routing, if you want to name 
your program something other than DFHDYP. For programming information about 
user-replaceable programs in general, and about the dynamic routing program in 
particular, see Writing a dynamic routing program, in the CICS Customization 
Guide. 

In the server region to which the program-link request is shipped, the mirror 
transaction is invoked in the way described for static routing. 

 

Chapter 8. CICS distributed program link 99



Which requests can be dynamically routed? 
For a program-link request to be eligible for dynamic routing, the remote program 
must either be defined to the local system as DYNAMIC(YES), or not be defined to 
the local system. 

Note: If the program specified on an EXEC CICS LINK command is not currently 
defined, what happens next depends on whether program autoinstall is active: 
v   If program autoinstall is inactive, the dynamic routing program is invoked. 
v   If program autoinstall is active, the autoinstall user program is invoked. The 

dynamic routing program is then invoked only if the autoinstall user program: 
–   Installs a program definition that specifies DYNAMIC(YES), or 
–   Does not install a program definition.
For further information about autoinstalling programs invoked by EXEC CICS 
LINK commands, see “When definitions of remote server programs aren't 
required” on page 209.

As well as “traditional” CICS-to-CICS DPL calls instigated by EXEC CICS LINK 
PROGRAM commands, program-link requests received from outside CICS can also 
be dynamically routed. For example, all of the following types of program-link 
request can be dynamically routed: 
v   Calls received from: 

–   The CICS Web Interface 
–   The CICS Gateway for Java

v   Calls from external CICS interface (EXCI) client programs 
v   External Call Interface (ECI) calls from any of the CICS Client workstation 

products 
v   Distributed Computing Environment (DCE) remote procedure calls (RPCs) 
v   ONC/RPC calls.

A program-link request received from outside CICS can be dynamically routed by: 
v   Defining the program to CICS Transaction Server for z/OS as DYNAMIC(YES) 
v   Coding your dynamic routing program to route the request.

When the dynamic routing program is invoked 
Program-link requests are both “traditional” CICS-to-CICS DPL calls and requests 
received from outside CICS. For eligible program-link requests the dynamic 
routing program is invoked at the following points. 
v   Before the linked-to program is executed, to either: 

–   Obtain the SYSID of the region to which the link should be routed. 

Note: The address of the caller's communication area (COMMAREA) is 
passed to the routing program, which can therefore route requests by 
COMMAREA contents if this is appropriate. 

–   Notify the routing program of a statically-routed request. This occurs if the 
program is defined as DYNAMIC(YES)—or is not defined—but the caller 
specifies the name of a remote region on the SYSID option on the LINK 
command. 
In this case, specifying the target region explicitly takes precedence over any 
SYSID returned by the dynamic routing program.

 

100 CICS TS for z/OS 4.1: Intercommunication Guide



v   If an error occurs in route selection—for example, if the SYSID returned by the 
dynamic routing program is unavailable or unknown, or the link fails on the 
specified target region—to provide an alternate SYSID. This process iterates until 
either the program-link is successful or the return code from the dynamic 
routing program is not equal to zero. 

v   After the link request has completed, if reinvocation was requested by the 
routing program. 

v   If an abend is detected after the link request has been shipped to the specified 
remote system, if reinvocation was requested by the routing program.

Using CICSPlex SM to route requests 
If you use CICSPlex SM to manage your CICSplex, you might not need to write 
your own dynamic routing program. 

CICSPlex SM provides a dynamic routing program that supports both workload 
balancing and workload separation. All you have to do is to tell CICSPlex SM, 
which regions in the CICSplex can participate in dynamic routing. 

Using CICSPlex SM, you could integrate workload balancing for program-link 
requests with that for terminal-initiated transactions. 

For introductory information about CICSPlex SM, see the CICSPlex SM Concepts 
and Planning manual. 

How CICS obtains the transaction ID 

A transaction identifier is always associated with each dynamic program-link 
request. CICS obtains the transaction ID using the following sequence: 
1.   From the TRANSID option on the LINK command 
2.   From the TRANSID option on the program definition 
3.   'CSMI', the generic mirror transaction. This is the default if neither of the 

TRANSID options are specified.

If you write your own dynamic routing program, perhaps based on DFHDYP, the 
transaction ID associated with the request may not be significant—you could, for 
example, code your program to route requests based on program name and 
available AORs. 

However, if you use CICSPlex SM to route your program-link requests, the 
transaction ID becomes much more significant, because CICSPlex SM's routing 
logic is transaction-based. CICSPlex SM routes each DPL request according to the 
rules for its associated transaction as specified in the Transaction Group 
(TRANGRP), Workload Management Definition (WLMDEF) and Workload 
Management Specification (WLMSPEC) resource tables. 

Note: The CICSPlex SM system programmer can use the EYU9WRAM 
user-replaceable module to change the transaction ID associated with a DPL 
request. 

Daisy-chaining of DPL requests 
Statically-routed DPL requests can be daisy-chained from region to region. 

 

Chapter 8. CICS distributed program link 101



For example, imagine that you have three CICS regions—A, B, and C. In region A, 
a program P is defined with the attribute REMOTESYSTEM(B). In region B, P is 
defined with the attribute REMOTESYSTEM(C). An EXEC CICS LINK 
PROGRAM(P) command issued in region A is shipped to region B for execution, 
from where it is shipped to region C. 

Dynamically-routed DPL requests cannot be daisy-chained from region to region. 
Imagine two CICS regions, A and B. A program P is defined as 
DYNAMIC(YES)—or is not defined—in both regions. An EXEC CICS LINK 
PROGRAM(P) command is issued in region A. The dynamic routing program is 
invoked in region A and routes the request to region B. In region B, the dynamic 
routing program is not invoked, even though program P is defined as 
DYNAMIC(YES); P runs locally, in region B. 

CICS does not support the daisy-chaining of dynamic DPL requests which includes 
combining dynamic routing with static routing. When a DPL request has been 
dynamically routed CICS expects the program to execute in the target region. If a 
dynamically routed DPL request is statically daisy-chained to a different target 
region via intermediate regions, it must execute in that target region. 

Limitations of DPL server programs 
A DPL server program cannot issue the following types of commands. 
v   Terminal-control commands referring to its principal facility 
v   Commands that set or inquire on terminal attributes 
v   BMS commands 
v   Signon and signoff commands 
v   Batch data interchange commands 
v   Commands addressing the TCTUA 
v   Syncpoint commands (except when the client program specifies the 

SYNCONRETURN option on the LINK request).

If the client specifies SYNCONRETURN: 
v   The server program can issue syncpoint requests. 
v   The mirror transaction requests a syncpoint when the server program completes 

processing. 

Attention:  Both these kinds of syncpoint commit only the work done by the 
server program. In applications where both the client program and the server 
program update recoverable resources, they could cause data-integrity problems if 
the client program fails after issuing the LINK request. 

For further information about application programming for DPL, see Chapter 20, 
“Application programming for CICS DPL,” on page 247. 

Intersystem queuing 
If the link to a remote region is established, but there are no free sessions available, 
distributed program link requests may be queued in the issuing region. 
Performance problems can occur if the queue becomes excessively long. 

For guidance information about controlling intersystem queues, see Chapter 24, 
“Intersystem session queue management,” on page 279. 

 

102 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|
|
|



Examples of DPL 
This section gives some examples to illustrate the lifetime of the mirror transaction 
and the information flowing between the client program and its mirror transaction. 

 

 Figure 33 shows a DPL request on which the client transaction issues a syncpoint. 
Because the mirror is always long-running, it does not terminate before 
SYNCPOINT is received. 
 

Transmitted
System A Information System B

Application Transaction
.
.

EXEC CICS LINK Attach mirror,
PROGRAM('PGA') 'LINK' request
COMMAREA(...) ... Attach

. mirror transaction.

.
Mirror performs LINK
to PGA.

PGA runs, issues RETURN.

Reply passed to Commarea data Mirror ships the
client program. commarea back to

. system A.

. 'SYNCPOINT'
EXEC CICS SYNCPOINT request, last

Mirror takes syncpoint,
frees the session,

Positive response and terminates.
Syncpoint completed.
Client program
continues.

  

Figure 33. DPL with the client transaction issuing a syncpoint

Transmitted
System A Information System B

Application Transaction
.
.

EXEC CICS LINK
PROGRAM('PGA') Attach mirror,
COMMAREA(...) ... 'LINK' request

. Attach

. mirror transaction.

.
Abend condition Program PGA runs,

Client program abends. abends.
.
. Mirror waits for
. syncpoint or abend

Abend message from client region.
Message routed to CSMT.

Session freed.

  

Figure 34. DPL with the server program abending

 

Chapter 8. CICS distributed program link 103



Figure 34 on page 103 shows a DPL request on which the server program abends. 

 

104 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 9. Distributed transaction processing 

The technique of distributing the functions of a transaction over several transaction 
programs within a network is called distributed transaction processing (DTP). 

This chapter contains the following topics: 
v   “Overview of DTP” 
v   “Advantages over function shipping and transaction routing” 
v   “Why distributed transaction processing?” on page 106 
v   “What is a conversation and what makes it necessary?” on page 107 
v   “MRO or APPC for DTP?” on page 111 
v   “APPC mapped or basic?” on page 112 
v   “EXEC CICS or CPI Communications?” on page 113.

Overview of DTP 
When CICS arranges function shipping, distributed program link (DPL), 
asynchronous transaction processing, or transaction routing for you, it establishes a 
logical data link with a remote system. 

A data exchange between the two systems then follows. This data exchange is 
controlled by CICS-supplied programs, using APPC, LUTYPE6.1, or MRO 
protocols. The CICS-supplied programs issue commands to allocate conversations, 
and send and receive data between the systems. Equivalent commands are 
available to application programs, to allow applications to converse. The technique 
of distributing the functions of a transaction over several transaction programs 
within a network is called distributed transaction processing (DTP). 

Of the five intercommunication facilities, DTP is the most flexible and the most 
powerful, but it is also the most complex. This chapter introduces you to the basic 
concepts. 

For guidance on developing DTP applications, see the CICS Distributed Transaction 
Programming Guide. 

Advantages over function shipping and transaction routing 
Function shipping gives you access to remote resources and transaction routing lets 
a terminal communicate with remote transactions. 

At first sight, these two facilities may appear sufficient for all your 
intercommunication needs. Certainly, from a functional point of view, they are 
probably all you do need. However, there are always design criteria that go 
beyond pure function. Machine loading, response time, continuity of service, and 
economic use of resources are just some of the factors that affect transaction 
design. 

Consider the following example: 

A supermarket chain has many branches, which are served by several distribution 
centers, each stocking a different range of goods. Local stock records at the branches 

 

© Copyright IBM Corp. 1977, 2011 105



are updated online from point-of-sale terminals. Sales information has also to be 
sorted for the separate distribution centers, and transmitted to them to enable 
reordering and distribution.

An analyst might be tempted to use function shipping to write each reorder record 
to a remote file as it arises. This method has the virtue of simplicity, but must be 
rejected for several reasons: 
v   Data is transmitted to the remote systems irregularly in small packets. This 

means inefficient use of the links. 
v   The transactions associated with the point-of-sale devices are competing for 

sessions with the remote systems. This could mean unacceptable delays at 
point-of-sale. 

v   Failure of a link results in a catastrophic suspension of operations at a branch. 
v   Intensive intercommunication activity (for example, at peak periods) causes 

reduction in performance at the terminals.

Now consider the solution where each sales transaction writes its reorder records 
to a transient data queue. Here the data is quickly disposed of, leaving the 
transaction to carry on its conversation with the terminal. 

Restocking requests are seldom urgent, so it may be possible to delay the sorting 
and sending of the data until an off-peak period. Alternatively, the transient data 
queue could be set to trigger the sender transaction when a predefined data level 
is reached. Either way, the sender transaction has the same job to do. 

Again, it is tempting to use function shipping to transmit the reorder records. After 
the sort process, each record could be written to a remote file in the relevant 
remote system. However, this method is not ideal either. The sender transaction 
would have to wait after writing each record to make sure that it got the right 
response. Apart from using the link inefficiently, waiting between records would 
make the whole process impossibly slow. This chapter tells you how to solve this 
problem, and others, using distributed transaction processing. 

The flexibility of DTP can, in some circumstances, be used to achieve improved 
performance over function shipping. Consider an example in which you are 
browsing a remote file to select a record that satisfies some criteria. If you use 
function shipping, CICS ships the GETNEXT request across the link, and lets the 
mirror perform the operation and ship the record back to the requester. 

This is a lot of activity — two flows on the network; and the data flow can be 
quite significant. If the browse is on a large file, the overhead can be unacceptably 
high. One alternative is to write a DTP conversation that ships the selection 
criteria, and returns only the keys and relevant fields from the selected records. 
This reduces both the number of flows and the amount of data sent over the link, 
thus reducing the overhead incurred in the function-shipping case. 

Why distributed transaction processing? 
In a multisystem environment, data transfers between systems are necessary 
because end users need access to remote resources. 

In managing these resources, network resources are used. But performance suffers 
if the network is used excessively. There is therefore a performance gain if 
application design is oriented toward doing the processing associated with a 
resource in the resource-owning region. 

 

106 CICS TS for z/OS 4.1: Intercommunication Guide



DTP lets you process data at the point where it arises, instead of overworking 
network resources by assembling it at a central processing point. 

There are, of course, other reasons for using DTP. DTP does the following: 
v   Allows some measure of parallel processing to shorten response times 
v   Provides a common interface to a transaction that is to be attached by several 

different transactions 
v   Enables communication with applications running on other systems, particularly 

on non-CICS systems 
v   Provides a buffer between a security-sensitive file or database and an 

application, so that no application need know the format of the file records 
v   Enables batching of less urgent data destined for a remote system.

What is a conversation and what makes it necessary? 
In DTP, transactions pass data to each other directly. While one sends, the other 
receives. The exchange of data between two transactions is called a conversation. 

Although several transactions can be involved in a single distributed process, 
communication between them breaks down into a number of self-contained 
conversations between pairs. Each such conversation uses a CICS resource known 
as a session. 

Conversation initiation and transaction hierarchy 
A transaction starts a conversation by requesting the use of a session to a remote 
system. Having obtained the session, it causes an attach request to be sent to the 
other system to activate the transaction that is to be the conversation partner. 

A transaction can initiate any number of other transactions, and hence, 
conversations. In a complex process, a distinct hierarchy emerges, with the 
terminal-initiated transaction at the very top. Figure 35 on page 108 shows a 
possible configuration. Transaction TRAA is attached over the terminal session. 
Transaction TRAA attaches transaction TRBB, which, in turn, attaches transactions 
TRCC and TRDD. Both these transactions attach the same transaction, SUBR, in 
system CICSE. This gives rise to two different tasks of SUBR. 
 

 

Chapter 9. Distributed transaction processing 107



The structure of a distributed process is determined dynamically by program; it 
cannot be predefined. Notice that, for every transaction, there is only one inbound 
attach request, but there can be any number of outbound attach requests. The 
session that activates a transaction is called its principal facility. A session that is 
allocated by a transaction to activate another transaction is called its alternate 
facility. Therefore, a transaction can have only one principal facility, but any 
number of alternate facilities. 

When a transaction initiates a conversation, it is the front end on that 
conversation. Its conversation partner is the back end on the same conversation. 
(Some books refer to the front end as the initiator and the back end as the 
recipient.) It is normally the front end that dominates, and determines the way the 
conversation goes. You can arrange for the back end to take over if you want, but, 
in a complex process, this can cause unnecessary complication. This is further 
explained in the discussion on synchronization later in this chapter. 

Dialog between two transactions 
A conversation transfers data from one transaction to another. 

For this to function properly, each transaction must know what the other intends. 
It would be nonsensical for the front end to send data if all the back end wants to 
do is print out the weekly sales report. It is therefore necessary to design, code, 
and test front end and back end as one software unit. The same applies when there 
are several conversations and several transaction programs. Each new conversation 
adds to the complexity of the overall design. 

CICSA

Transaction TRAA

Terminal

CICSB

Transaction TRBB

CICSC CICSD

Transaction TRCC Transaction TRDD

CICSE

Transaction SUBR Transaction SUBR

  

Figure 35. DTP in a multisystem configuration

 

108 CICS TS for z/OS 4.1: Intercommunication Guide



In the example in “Advantages over function shipping and transaction routing” on 
page 105, the DTP solution is to transmit the contents of the transient data queue 
from the front end to the back end. The front end issues a SEND command for 
each record that it takes off the queue. The back end issues RECEIVE commands 
until it receives an indication that the transmission has ended. 

In practice, most conversations transfer a file of data from one transaction to 
another. The next stage of complexity is to cause the back end to return data to the 
front end, perhaps the result of some processing. Here the front end is 
programmed to request conversation turnaround at the appropriate point. 

Control flows and brackets 
During a conversation, data passes over the link in both directions. 

A single transmission is called a flow. Issuing a SEND command does not always 
cause a flow. This is because the transmission of user data can be deferred; that is, 
held in a buffer until some event takes place. The APPC architecture defines data 
formats and packaging. CICS handles these things for you, and they concern you 
only if you need to trace flows for debugging. 

The APPC architecture defines a data header for each transmission, which holds 
information about the purpose and structure of the data following. The header also 
contains bit indicators to convey control information to the other side. For 
example, if one side wants to tell the other that it can start sending, CICS sets a bit 
in the header that signals a change of direction in the conversation. 

To keep flows to a minimum, non-urgent control indicators are accumulated until 
it is necessary to send user data, at which time they are added to the header. 

For the formats of the headers and control indicators used by APPC, see the SNA 
Formats manual. 

In complex procedures, such as establishing syncpoints, it is often necessary to 
send control indicators when there is no user data available to send. This is called 
a control flow. 

begin_bracket marks the start of a conversation; that is, when a transaction is 
attached. conditional_end_bracket ends a conversation. End bracket is conditional 
because the conversation can be reopened under some circumstances. A 
conversation is in bracket when it is still active. 

MRO is not unlike APPC in its internal organization. It is based on LUTYPE6.1, 
which is also an SNA-defined architecture. 

Conversation state and error detection 
As a conversation progresses, it moves from one state to another within both 
conversing transactions. 

The conversation state determines the commands that may be issued. For example, 
it is no use trying to send or receive data if there is no session linking the front 
end to the back end. Similarly, if the back end signals end of conversation, the 
front end cannot receive any more data on the conversation. 

 

Chapter 9. Distributed transaction processing 109



Either end of the conversation can cause a change of state, usually by issuing a 
particular command from a particular state. CICS tracks these changes, and stops 
transactions from issuing the wrong command in the wrong state. 

Synchronization 
There are many things that can go wrong during the running of a transaction. The 
conversation protocol helps you to recover from errors and ensures that the two 
sides remain in step with each other. This use of the protocol is called 
synchronization. 

Synchronization allows you to protect resources such as transient data queues and 
files. If anything goes wrong during the running of a transaction, the associated 
resources should not be left in an inconsistent state. 

Examples of use 
Suppose, for example, that a transaction is transmitting a queue of data to another 
system to be written to a DASD file. Suppose also that for some reason, not 
necessarily connected with the intercommunication activity, the receiving 
transaction is abended. 

Even if a further abend can be prevented, there is the problem of how to continue 
the process without loss of data. It is uncertain how many queue items have been 
received and how many have been correctly written to the DASD file. The only 
safe way of continuing is to go back to a point where you know that the contents 
of the queue are consistent with the contents of the file. However, you then have 
two problems. On one side, you need to restore the queue entries that you have 
sent; on the other side, you need to delete the corresponding entries in the DASD 
file. 

The cancelation by an application program of all changes to recoverable resources 
since the last known consistent state is called rollback. The physical process of 
recovering resources is called backout. The condition that exists as long as there is 
no loss of consistency between distributed resources is called data integrity. 

There are cases in which you may want to recover resources, even though there are 
no error conditions. Consider an order entry system. While entering an order for a 
customer, an operator is told by the system that the customer's credit limit would 
be exceeded if the order went through. Because there is no use continuing until the 
customer is consulted, the operator presses a PF key to abandon the order. The 
transaction is programmed to respond by restoring the data resources to the state 
they were in at the start of the order. 

Taking syncpoints 
If you were to log your own data movements, you could arrange backout of your 
files and queues. 

However, it would involve some very complex programming, which you would 
have to repeat for every similar application. To save you this overhead, CICS 
arranges resource recovery for you. LU management works with resource 
management in ensuring that resources can be restored. 

The points in the process where resources are declared to be in a known consistent 
state are called synchronization points, often shortened to syncpoints. Syncpoints 
are implied at the beginning and end of a transaction. A transaction can define 
other syncpoints by program command. All processing between two consecutive 
syncpoints belongs to a unit of work (UOW). 

 

110 CICS TS for z/OS 4.1: Intercommunication Guide



Taking a syncpoint commits all recoverable resources. This means that all systems 
involved in a distributed process erase all the information they have been keeping 
about data movements on recoverable resources. Now backout is no longer 
possible, and all changes to the resources since the last syncpoint are made 
irreversible. 

Although CICS commits and backs out changes to resources for you, the service 
must be paid for in performance. You might have transactions that do not need 
such complexity, and it would be wasteful to employ it. If the recovery of 
resources is not a problem, you can use simpler methods of synchronization. 

The three sync levels 
The APPC architecture defines three levels of synchronization (called sync levels). 
v   Level 0 – none 
v   Level 1 – confirm 
v   Level 2 – syncpoint

At sync level 0, there is no system support for synchronization. It is nevertheless 
possible to achieve some degree of synchronization through the interchange of 
data, using the SEND and RECEIVE commands. 

If you select sync level 1, you can use special commands for communication 
between the two conversation partners. One transaction can confirm the continued 
presence and readiness of the other. The user is responsible for preserving the data 
integrity of recoverable resources. 

The level of synchronization described earlier in this section corresponds to sync 
level 2. Here, system support is available for maintaining the data integrity of 
recoverable resources. 

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of 
changes to recoverable resources, but no control flows take place. CICS takes a full 
syncpoint when a transaction is normally terminated. Transaction abend causes 
rollback. The transactions themselves can initiate syncpoint or rollback requests. 
However, a syncpoint or rollback request is propagated to another transaction only 
when the originating transaction is in conversation with the other transaction, and 
if sync level 2 has been selected for the conversation between them. 

Remember that syncpoint and rollback are not peculiar to any one conversation 
within a transaction. They are propagated on every sync level 2 conversation that 
is currently in bracket. 

MRO or APPC for DTP? 
You can program DTP applications for both MRO and APPC links. The two 
conversation protocols are not identical. Although you seldom have the choice for 
a particular application, an awareness of the differences and similarities will help 
you to make decisions about compatibility. 

Choosing between MRO and APPC can be quite simple. The options depend on 
the configuration of your CICS complex and on the nature of the conversation 
partner. You cannot use MRO to communicate with a partner in a non-CICS 
system. Further, it supports communication between transactions running in CICS 
systems in different MVS images only if the MVS images are in the same MVS 

 

Chapter 9. Distributed transaction processing 111



sysplex, and are joined by cross-system coupling facility (XCF) links. (For full 
details of the hardware and software requirements for XCF/MRO, see Installation 
requirements for XCF/MRO.) 

For communication with a partner in another CICS system, where the CICS 
systems are either in the same MVS image, or in the same sysplex, you can use 
either the MRO or the APPC protocol. There are good performance reasons for 
using MRO. But if there is any possibility that the distributed transactions will 
need to communicate with partners in other operating systems, it is better to use 
APPC so that the transaction remains unchanged. 

Table 3 summarizes the main differences between the two protocols. 

 Table 3. MRO compared with APPC 

MRO APPC 

Function is realized within CICS Depends on VTAM or similar 

Nonstandard architecture SNA architecture 

CICS-to-CICS links only Links to non-CICS systems possible 

Communicates within single MVS image, or 
(using XCF/MRO) between MVS images in 
same sysplex 

Communicates across multiple MVS images 
and other operating systems 

PIP data not supported PIP data supported 

Data transmission not deferred Deferred data transmission 

Partner transaction identified in data Partner transaction defined by program 
command 

RECEIVE can only be issued in receive state RECEIVE causes conversation turnaround 
when issued in send state on mapped 
conversations 

No expedited flow possible ISSUE SIGNAL command flows expedited 

WAIT command has no function WAIT command causes transmission of 
deferred data

  

APPC mapped or basic? 
APPC conversations can either be mapped or basic. If you are interested in 
CICS-to-CICS applications, you need only use mapped conversations. Basic 
conversations (also referred to as “unmapped”) are useful when communicating 
with systems that do not support mapped conversations. These include some 
APPC devices. 

The two protocols are similar. The main difference lies in the way user data is 
formatted for transmission. In mapped conversations, you send the data you want 
your partner to receive; in basic conversations, you have to add a few control bytes 
to convert the data into an SNA-defined format called a generalized data stream 
(GDS). You also have to include the keyword GDS in EXEC CICS commands for 
basic conversations. 

Table 4 on page 113 summarizes the differences between mapped and basic 
conversations. Note that it only applies to the CICS API. CPI Communications, 
introduced in the next section, has its own rules. 

 

112 CICS TS for z/OS 4.1: Intercommunication Guide



Table 4. APPC conversations – mapped or basic? 

Mapped Basic 

The conversation partners exchange data 
that is relevant only to the application. 

Both partners must package the user data 
before sending and unpackage it on receipt. 

All conversations for a transaction share the 
same EXEC Interface Block for status 
reporting. 

Each conversation has its own area for state 
information. 

The transaction can handle exceptional 
conditions or let them default. 

The transaction must test for exceptional 
conditions in a data area set aside for the 
purpose. 

A RECEIVE command issued in send state 
causes conversation turnaround. 

A RECEIVE command is illegal in send 
state. 

Transactions can be written in any of the 
supported languages. 

Transactions can be written in assembler 
language or C only.

  

EXEC CICS or CPI Communications? 
CICS gives you a choice of two application programming interfaces (APIs) for 
coding your DTP conversations on APPC sessions. 

The first, the CICS API, is the programming interface of the CICS implementation 
of the APPC architecture. It consists of EXEC CICS commands and can be used 
with all CICS-supported languages. The second, Common Programming Interface 
Communications (CPI Communications) is the communication interface defined 
for the SAA environment. It consists of a set of defined verbs, in the form of 
program calls, which are adapted for the language being used. 

Table 5 compares the two methods to help you to decide which API to use for a 
particular application. 

 Table 5. CICS API compared with CPI Communications 

CICS API CPI Communications 

Portability between different members of the 
CICS family. 

Portability between systems that support 
SAA facilities. 

Basic conversations can be programmed 
only in assembler language or C. 

Basic conversations can be programmed in 
any of the available languages. 

Sync levels 0, 1, and 2 supported. Sync levels 0, 1, and 2 supported, except for 
transaction routing, for which only sync levels 0 
and 1 are supported. 

PIP data supported. PIP data not supported. 

Only a few conversation characteristics are 
programmable. The rest are defined by 
resource definition. 

Most conversation characteristics can be 
changed dynamically by the transaction 
program. 

Can be used on the principal facility to a 
transaction started by ATI. 

Cannot be used on the principal facility to a 
transaction started by ATI. 

Limited compatibility with MRO. No compatibility with MRO.
  

You can mix CPI Communications calls and EXEC CICS commands in the same 
transaction, but not on the same side of the same conversation. You can implement 
a distributed transaction where one partner to a conversation uses CPI 

 

Chapter 9. Distributed transaction processing 113



Communications calls and the other uses the CICS API. In such a case, it would be 
up to you to ensure that the APIs on both sides map consistently to the APPC 
architecture. 

 

114 CICS TS for z/OS 4.1: Intercommunication Guide



Part 2. Installing and configuring intercommunication support 

There are different installation and configuration requirements depending on 
whether a CICS system is to participate in intersystem communication or 
multiregion operation. 

For information about the general requirements for CICS installation, see the CICS 
Transaction Server for z/OS Installation Guide. For information about coding the CICS 
system initialization parameters, see Specifying CICS system initialization 
parameters the CICS System Definition Guide. 

Chapter 11, “Configuring multiregion operation,” on page 119 describes how to set 
up CICS for multiregion operation. 

Chapter 10, “Configuring intersystem communication,” on page 117 describes how 
to set up CICS for intersystem communication. It also contains notes on the 
installation requirements of ACF/VTAM and IMS when these products are to be 
used with CICS in an intersystem communication environment. 

Chapter 12, “Configuring VTAM generic resources,” on page 121 describes how to 
register your terminal-owning regions as members of a VTAM generic resource 
group, and things you need to consider when doing so. 

 

© Copyright IBM Corp. 1977, 2011 115



116 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 10. Configuring intersystem communication 

You can configure CICS to communicate over TCP/IP or over SNA in an 
intersystem communication environment. 

Configuring support for communicating over a TCP/IP network 
CICS operating in a dual-mode environment uses both IPv4 and IPv6 networks 
and always attempts to communicate using IPv6 before using the IPv4 network. A 
single-mode environment operates in an IPv4 network only. You can set up 
TCP/IP services to use a number of CICS-supported protocols, including HTTP 
and IPIC. 

Before you begin 

You need a minimum level of CICS TS 4.1 to communicate using IPv6. The CICS 
TS 4.1 region must be running in a dual-mode (IPv4 and IPv6) environment and 
the client or server that CICS is communicating with must also be running in a 
dual-mode environment. If a region is running in a single-mode (IPv4) 
environment or a region is operating at a pre-CICS TS 4.1 release, you can 
communicate using IPv4 only. 

About this task 

Follow these steps to configure your connection to use either IPv4 or IPv6 
addressing, or a combination of the two formats: 

Procedure 
1.   Activate TCP/IP services by specifying TCPIP=YES as a system initialization 

parameter. 
2.   Define resources to support the protocol you are using to communicate over in 

the TCP/IP network. Here are examples of two different protocols which can 
be defined using resources: 
a.   If you are using IPIC, define and install an IPCONN resource definition and 

a TCPIPSERVICE resource definition in both partner regions. See “Defining 
IP interconnectivity (IPIC) connections” on page 150 for examples and 
instructions to help you define and install your resource definitions. 

b.   If you are using HTTP with CICS as an HTTP client, define and install a 
URIMAP(CLIENT) resource definition in the issuing region and a 
TCPIPSERVICE resource definition in the listening region. Define the host 
name, IPv4 or IPv6 address that you want to use in the HOST attribute of 
the URIMAP(CLIENT) resource definition. See Creating a URIMAP 
definition for an HTTP request by CICS as an HTTP clientthe CICS Internet 
Guide for information about the URIMAP definitions for HTTP requests.

3.   Optional: Advise your network administrator to define an IPv4 primary 
interface address to ensure that you do not have problems when 
communicating outside of a CICSplex. The primary interface address is the 
address that is specified in the PRIMARYINTERFACE statement for the 
TCPIP.PROFILE. If you issue a GETHOSTID call, GETHOSTID returns the IPv4 
primary interface address, or the loopback address if GETHOSTID cannot find a 
host address. The IPRESOLVED option stores the address returned by GETHOSTID, 
so IPRESOLVED might contain either the primary interface address, or the 

 

© Copyright IBM Corp. 1977, 2011 117

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



loopback address. If you are communicating outside of the CICSplex, results 
can be unpredictable if a loopback address is returned. To define a primary 
interface address, see the information about the TCP/IP address space, 
PROFILE.TCPIP, in the z/OS Communications Server IP Configuration Guide.

Results 

The TCP/IP connection is correctly configured and is available for use over an 
IPv4 connection. 

Your connection will also be available over IPv6 if you have the correct level of 
CICS and your environments have dual-mode capability. 

What to do next 

If you are having problems with your connection, see the CICS Problem 
Determination Guide. 

Configuring support for ISC over SNA 
The information on ACF/VTAM and IMS given in this section is for guidance 
only. Always consult the current ACF/VTAM or IMS publications for the latest 
information. 

ISC over SNA uses the ACF/VTAM access method, so when you install 
ACF/VTAM, you must include intersystem communication programs and 
operands in your system to allow intersystem communication over SNA (ISC over 
SNA). 
1.   Include the intersystem communication programs in your system (by specifying 

YES on the VTAM and ISC system initialization parameters. 
2.   When you define your CICS system to ACF/VTAM, include intersystem 

communication operands in the VTAM APPL statement. 
3.   If your CICS installation is to use CICS-to-IMS intersystem communication, 

ensure that the CICS and the IMS installations are fully compatible. For more 
information about defining compatible CICS and IMS nodes, see Chapter 13, 
“How to define connections to remote systems,” on page 147. For full details of 
IMS installation, see the IMS Installation Guide. 
a.   Include intersystem communication operands in the VTAM APPL statement. 
b.   Define IMS ISC-related macros and parameters. See “Defining compatible 

CICS and IMS nodes” on page 176.

For more information, see the CICS Transaction Server for z/OS Installation Guide 

 

118 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|
|

|

|
|

|
|

|

|
|



Chapter 11. Configuring multiregion operation 

You can configure CICS to communicate using multiregion operation. 

It contains the following topics: 
v   “Providing support for MRO” 
v   “Steps after configuring MRO.”

The information on MVS/ESA given in this topic is for guidance only. Always 
consult the current MVS/ESA publications for the latest information. 

Providing support for MRO 
To provide support for multiregion operation, you must define CICS as an MVS 
subsystem and install required CICS modules. 

About this task 

The links to these topics are all available in the CICS Transaction Server for z/OS 
Installation Guide. 

Procedure 
1.   Define CICS as an MVS subsystem. See . 
2.   Ensure that the required CICS modules, are included in your CICS system. See 

. 
3.   Install the DFHIRP and DFHCSVC modules in the MVS link pack area (LPA). 

See .

What to do next 

If you are installing support for cross-system MRO (XCF/MRO), you must perform 
some additional administration tasks. These tasks are also described in the CICS 
Transaction Server for z/OS Installation Guide. See . 

Steps after configuring MRO 
When you have configured MRO support, you must define the MRO connection 
and resources. 

Procedure 
1.   Define MRO connection to the remote systems. For more information, see 

“Defining links for multiregion operation” on page 161. 
2.   Define resources on both the local CICS region and remote systems. For more 

information, see Chapter 17, “Defining local resources,” on page 229 and 
Chapter 16, “Defining remote resources,” on page 203.

 

© Copyright IBM Corp. 1977, 2011 119



120 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 12. Configuring VTAM generic resources 

In a CICSplex containing a set of functionally-equivalent CICS terminal-owning 
regions (TORs), you can use the VTAM generic resource function to balance 
terminal sessions across the available TORs. 

This topic assumes some knowledge of tasks, such as defining connections to 
remote systems. For information on defining links to remote systems, see 
Chapter 13, “How to define connections to remote systems,” on page 147. 

For an overview of VTAM generic resources, see “Workload balancing in a 
sysplex” on page 30. 

This section contains the following topics: 
v   “Prerequisites for VTAM generic resources” 
v   “Planning your CICSplex to use VTAM generic resources” 
v   “Defining connections in a generic resource environment” on page 123 
v   “Generating VTAM generic resource support” on page 125 
v   “Migrating a TOR to a generic resource” on page 126 
v   “Removing a TOR from a generic resource” on page 127 
v   “Moving a TOR to a different generic resource” on page 128 
v   “Setting up inter-sysplex communications between generic resources” on page 

128 
v   “Ending affinities” on page 133 
v   “Using ATI with generic resources” on page 137 
v   “Using the ISSUE PASS command” on page 139 
v   “Rules checklist” on page 140 
v   “Dealing with special cases” on page 141.

Prerequisites for VTAM generic resources 
To use VTAM generic resources, you need ACF/VTAM Version 4 Release 2 or a 
later, upward-compatible, release. 

VTAM must be: 
v   Running under an MVS that is part of a sysplex. 
v   Connected to the sysplex coupling facility. For information about the sysplex 

coupling facility, see the MVS/ESA Setting Up a Sysplex manual, GC28-1449. 
v   At least one VTAM in the sysplex must be an advanced peer-to-peer networking 

(APPN) network node, with the other VTAMs being APPN end nodes. 

Planning your CICSplex to use VTAM generic resources 
You can use the VTAM generic resource function to balance terminal session 
workload across a number of CICS regions. 

You do this by grouping the CICS regions into a single generic resource. Each 
region is a member of the generic resource. When a terminal user logs on using 
the name of the generic resource (the generic resource name), VTAM establishes a 

 

© Copyright IBM Corp. 1977, 2011 121



session between the terminal and one of the members, depending upon the session 
workload at the time. The terminal user is unaware of which member he or she is 
connected to. It is also possible for a terminal user to log on using the name of a 
generic resource member (a member name), in which case the terminal is 
connected to the named member. 

APPC and LUTYPE6.1 connections do not log on in the same way as terminals. 
But they too can establish a connection to a generic resource by using either the 
generic resource name (in which case VTAM chooses the member to which the 
connection is made) or the member name (in which case the connection is made to 
the named member). 

When you plan your CICSplex to use VTAM generic resources, you need to 
consider the following: 
v   Which CICS regions should be generic resource members? 

Note that: 
–   Only CICS regions that provide equivalent functions for terminal users 

should be members of the same generic resource. 
–   A CICS region that uses XRF cannot be a generic resource member. 
–   In a CICSplex that contains both terminal-owning regions and 

application-owning regions (AORs), TORs and AORs should not be members 
of the same generic resource group.

v   Should there be one or many generic resources in the CICSplex? 
If you have several groups of end users who use different applications, you may 
want to set up several generic resources, one for each group of users. Bear in 
mind that a single CICS region cannot be a member of more than one generic 
resource at a time. 

v   Will there be APPC or LUTYPE6.12 connections: 
–   Between members of a generic resource?3 

–   Between members of one generic resource and members of another generic 
resource? 

–   Between members of a generic resource and systems which are not members 
of generic resources?

In all these cases you will need to understand when you can use: 
–   Connection definitions that specify the generic resource name of the partner 

system 
–   Connection definitions that specify the member name of the partner system 
–   Autoinstall to provide definitions of the partner system.

Naming the CICS regions 
Every CICS region has a network name, defined on a VTAM APPL statement, that 
uniquely identifies it to VTAM. 

You specify this name, or applid, on the APPLID system initialization parameter. If 
a region is a member of a generic resource, its applid and member name are one 
and the same. 

2. You are recommended to use APPC in preference to LUTYPE6.1 for CICS-to-CICS connections. 

3. You cannot use LUTYPE6.1 connections between members of a generic resource. 

 

122 CICS TS for z/OS 4.1: Intercommunication Guide



A generic resource—a collection of CICS regions—has a generic resource name. 
Each CICS region that is to be a member of a generic resource specifies the generic 
resource name on its GRNAME system initialization parameter. Unlike network 
names, generic resource names do not have to be defined to VTAM. However, they 
must be distinct from network names, and must be unique within a network. The 
System/390 MVS Sysplex Application Migration manual suggests naming conventions 
for CICS generic resources. 

When you start to use generic resources, you must decide how the generic 
resource name and the member names are to relate to the applids by which the 
member regions were known previously: 
v   If you have several TORs, you could continue to use the same applids for the 

TORs, and choose a new name for the generic resource. Terminal logon 
procedures will need to be changed to use the generic resource name, and so 
will connection definitions that are to use the generic resource name. 

v   If you have a single TOR, you could use its applid as the generic resource name, 
and give it a new applid. Changes to terminal logon procedures (and connection 
definitions) are minimized, but you need to change VTAM definitions, 
CONNECTION definitions in AORs connected using MRO, and RACF® profiles 
that specify the old applid.

Generic resources and XRF 
Because you cannot use XRF with VTAM generic resources, the concept of 
“specific” and “generic” CICS applids is not meaningful to regions that are 
members of a generic resource group. Each generic resource member has only one 
applid. 

For a full explanation of the relationships between generic and specific CICS 
applids, VTAM APPL statements, and VTAM generic resource names, see “Generic 
and specific applids for XRF” on page 187. 

Defining connections in a generic resource environment 
The VTAM generic resource function can be used to balance session workload for 
APPC and LUTYPE6.1 connections. 

Connections differ from terminal sessions in the following ways: 
v   A connection can have multiple sessions. VTAM's generic resource support 

creates dependencies, or affinities, to ensure that—once the first session is 
established—subsequent sessions to a generic resource are with the same 
member as the first session. 

v   Either end of a connection can (in principle) establish the first session. Which 
end does (in practice) initiate the first session affects how connections should be 
defined in the generic resource environment. 

v   Connections that fail, and require resynchronization, must be reestablished 
between the same members. VTAM uses affinities to ensure that reconnections 
are made correctly.

Defining connections 
When you define a connection to a generic resource, you have two possibilities for 
the NETNAME option of DEFINE CONNECTION. 

 

Chapter 12. Configuring VTAM generic resources 123



About this task 
1.   Use the name (applid) of the generic resource member. This type of connection 

is known as a member name connection. 
2.   Use the name of the generic resource. This type of connection is known as a 

generic resource name connection.

It is important that you make the correct choice when you define connections to a 
generic resource: 
v   When CICS initiates a connection using a member name definition, VTAM 

establishes a session with the named member. 
v   When CICS initiates a connection using a generic resource name connection, 

VTAM establishes a connection to one of the members of the generic resource. 
Which member it chooses depends upon whether any affinities exist, and upon 
VTAM's session-balancing algorithms.

When a CICS Transaction Server for z/OS generic resource member sends a BIND 
request on a connection, the request contains the generic resource name and the 
member name of the sender. If the partner is also a CICS TS for z/OS generic 
resource, it can distinguish both names. Other CICS systems take the generic 
resource name from the bind, and attempt to match it with a connection definition. 

It follows that the only time an LUtype 6 which is not itself a member of a CICS 
TS for z/OS generic resource can successfully use a member name to connect to a 
generic resource is when the generic resource member will never initiate any 
sessions. This is an unusual situation, and we therefore recommend that a 
connection from a system that is not a CICS TS for z/OS generic resource member 
to a generic resource should use the generic resource name. 

Defining connections between GR members and non-GR 
members 
When a generic resource member initiates a connection (that is, sends the first 
BIND) to another LUtype 6, it identifies itself to its partner with its generic 
resource name. Sessions initiated by the partner must then also use the generic 
resource name of the LU that initiates the connection. 

Defining connections between members within a generic 
resource 
You may want to define connections between members of a generic resource. You 
should always specify, on the NETNAME option of these CONNECTION 
definitions, the partner's member name and not the generic resource name. 

Defining connections between CICS TS for z/OS generic 
resources 
If you have two CICS TS for z/OS generic resources, you do not need to define 
and install member name connections for every possible connection between them. 

Instead, you can define and install a single generic resource name connection in 
each member that may initiate a connection with the partner generic resource. 
CICS then autoinstalls member name connections as they are required. 

The only connection definition required in a CICS region that does not initiate 
connections is one that can be used as an autoinstall template. If there is a generic 
resource name connection installed, it is used as the template, so we suggest that 
you define generic resource name connections for this purpose. 

 

124 CICS TS for z/OS 4.1: Intercommunication Guide



Generating VTAM generic resource support 
To generate VTAM generic resource support for your CICS TORs, you must 
perform these steps. 

About this task 
1.   Use the GRNAME system initialization parameter to define the generic 

resource name under which CICS is to register to VTAM. To comply with the 
CICS naming conventions, it is recommended that you pad the name to the 
permitted 8 characters with one of the characters #, @, or $. 
For example: 
GRNAME=CICSH### 

For details of the GRNAME system initialization parameter, see GRNAME, in 
the CICS System Definition Guide. The CICS naming conventions are described 
in the System/390 MVS Sysplex Application Migration manual. 

2.   Use an APPL statement to define the attributes of each participating TOR to 
VTAM. The attributes defined on each individual APPL statement should be 
identical. The name on each APPL statement must be unique. It identifies the 
TOR individually, within the generic resource group. 

3.   Shut down each terminal-owning region cleanly before registering it as a 
member of the generic resource. “Cleanly” means that CICS must be shut down 
by means of a CEMT PERFORM SHUTDOWN NOSDTRAN command. A 
CEMT PERFORM SHUTDOWN IMMEDIATE is not sufficient; nor is a CICS 
failure followed by a cold start. You should specify NOSDTRAN to prevent the 
possibility of the shutdown assist transaction force closing VTAM or 
performing an immediate shutdown. (The default shutdown assist transaction, 
DFHCESD, is described in Shutdown assist program (DFHCESD), in the CICS 
Operations and Utilities Guide.) 
If CICS has not been shut down cleanly before you try to register it as a 
member of a generic resource, VTAM may (due to the existence of persistent 
sessions) fail to register it, and issue a return code-feedback (RTNCD-FDB2) of 
X'14', X'86'. (VTAM RTNCD-FDB2s are described in the OS/390 eNetwork 
Communications Server: SNA Programming manual.) To correct this, you must 
restart CICS (with the same APPLID), and use a CEMT PERFORM 
SHUTDOWN NOSDTRAN command to shut it down cleanly. Alternatively, if 
you have written a batch program to end affinities (see page “Writing a batch 
program to end affinities” on page 134), you might be able to use it to achieve 
the same effect. As part of its processing, the skeleton program described on 
page “Writing a batch program to end affinities” on page 134 opens the original 
VTAM ACB with the original APPLID, unbinds any persisting sessions, and 
closes the ACB.

Note:  

1.   If your CICSplex comprises separate terminal-owning regions and 
application-owning regions, you should not include TORs and AORs in the 
same generic resource group. 

2.   You cannot use VTAM generic resources with XRF. If you specify 'YES' on the 
XRF system initialization parameter, any value specified for GRNAME is 
ignored. 

3.   If you specify a valid generic resource name on GRNAME, you should specify 
only name1 on the APPLID system initialization parameter. (If you do specify 
both name1 and name2 on the APPLID parameter, CICS ignores name1 and uses 
name2 as the VTAM applid.)

 

Chapter 12. Configuring VTAM generic resources 125



For detailed information about generating VTAM generic resource support, see the 
OS/390 eNetwork Communications Server: SNA Network Implementation. 

Migrating a TOR to a generic resource 
This section describes how to manage existing terminals and connections when 
migrating a TOR to membership of a CICS Transaction Server for z/OS generic 
resource. 

How to establish connections between two CICS TS for z/OS generic resources is 
described separately in “Setting up inter-sysplex communications between generic 
resources” on page 128. 

Note: For the purposes of this discussion, a “terminal-owning region” is any CICS 
region that owns terminals and is a candidate to be a member of the generic 
resource. 

Recommended methods 
For simplicity, first create a generic resource consisting of only one member. Do not 
add further members until the single-member generic resource is functioning 
satisfactorily. 

Because all members of a generic resource should be functionally equivalent, you 
create additional members by cloning the first member. (A situation in which you 
might choose to ignore this advice is described below.) 

There are two recommended methods for migrating a TOR to a generic resource. 
Which you use depends on whether there are existing LU6 connections. 

No LU6 connections 
If there are no LU6 (that is, APPC or LU6.1) connections to your terminal-owning 
region, we recommend that you choose a new name for the generic resource and 
retain your old applid. Non-LU6 terminals can log on by either applid or generic 
resource name, hence they are not affected by the introduction of the generic 
resource name. 

About this task 

You can then gradually migrate the terminals to using the generic resource name. 
Later, you can expand the generic resource by cloning the first member-TOR. 

Note: If you have several existing TORs that are functionally similar, rather than 
cloning the first member you might choose to expand the generic resource by 
adding these existing regions, using their applids as member-names. 

LU6 connections 
If there are LU6 (APPC or LU6.1) connections to your terminal-owning region, not 
counting connections to other members of the generic resource, we recommend 
that they log on using the generic resource name. However, you will probably 
want to migrate to generic resource without requiring all your LU6 network 
partners to change their logon procedures. 

About this task 

One option is to use the applid of your existing terminal-owning region as the new 
generic resource name. Because this requires you to choose a new applid, it is also 

 

126 CICS TS for z/OS 4.1: Intercommunication Guide



necessary to change the CONNECTION definitions of MRO-connected 
application-owning regions and RACF profiles that specify the old applid. Note, 
however, that you do not need to change the APPL profile to which the users are 
authorized—CICS passes the GRNAME to RACF as the APPL name during signon 
validation, and the old applid is now the GRNAME. The recommended migration 
steps are: 
1.   Configure your CICSplex with a single terminal-owning region. 
2.   Set the generic resource name to be the current applid of that terminal-owning 

region. 
3.   Change the current applid to a new value. 
4.   Change CONNECTION definitions in MRO partners to use the new applid for 

the terminal-owning region. 
5.   Change RACF profiles that specify the old applid. 
6.   Restart the CICSplex. 

At this point: 
v   Non-LU6 terminals can log on using the old name (without being aware that 

they are now using a VTAM generic resource). They will, of course, be 
connected to the same TOR as before because there is only one in the generic 
resource set. 

v   LU6 connections log on using the old name (thereby conforming to the 
recommendation that they should connect by generic resource name).

7.   Install new cloned terminal-owning regions with the same generic resource 
name and the same connectivity to the set of AORs. 
At this point: 
v   Autoinstalled non-LU6 terminals start to exploit session balancing. 
v   Autoinstalled APPC sync level 1 connections start to exploit session 

balancing. 
v   Because of affinities, existing LU6.1 and APPC sync level 2 connections 

continue to be connected to the original terminal-owning region (by generic 
resource name). 

v   Special considerations apply to non-autoinstalled terminals and connections, 
and to LU6 connections used for outbound requests. These are described in 
“Dealing with special cases” on page 141.

Removing a TOR from a generic resource 
There are several ways to remove a region from a generic resource. 

About this task 
v   Issue a SET VTAM CLOSED command to close the VTAM ACB. 
v   Shut down CICS. If you want to remove the region permanently, you must 

remove the generic resource name from the GRNAME system initialization 
parameter before restarting CICS. 

v   Issue a SET VTAM DEREGISTERED command to remove the region 
dynamically—that is, without closing the VTAM ACB or shutting down CICS. 
This may be useful if, for example, you need to apply minor maintenance to a 
TOR. 
When a TOR is dynamically removed from a generic resource, any terminals 
which are logged on are gradually redirected to the remaining generic resource 
members, as they log off and back on again. 

 

Chapter 12. Configuring VTAM generic resources 127



To re-register CICS with the generic resource, you must close and reopen the 
VTAM ACB. 
For details of the SET VTAM DEREGISTERED command, see SET VTAM, in the 
CICS System Programming Reference manual and CEMT SET VTAM, in the CICS 
Supplied Transactions manual.

Important:  

If you remove a region from a generic resource: 
v   You should end any affinities that it owns. If you do not, VTAM will not allow 

the affected APPC and LU6.1 partners to connect to other members of the 
generic resource. See “Ending affinities” on page 133. 

v   The region that has been removed should not try to acquire a connection to a 
partner that knows it by its generic resource name, unless the partner has ended 
its affinity to the removed region.

Moving a TOR to a different generic resource 
To move a region from one generic resource to another, you must perform the 
following steps. 

About this task 
1.   End any affinities that it owns. See “Ending affinities” on page 133. 
2.   Shut it down cleanly. See “Generating VTAM generic resource support” on 

page 125. 
If CICS is not shut down cleanly before you try to register it as a member of 
the new generic resource, VTAM may fail to register it, and issue a 
RTNCD-FDB2 of X'14', X'86'. To correct this, you must restart CICS with the 
original GRNAME and APPLID, and use a CEMT PERFORM SHUTDOWN 
NOSDTRAN command to shut it down cleanly. Alternatively, if you have 
written a batch program to end affinities, you might be able to use it to achieve 
the same effect. As part of its processing, the skeleton program described on 
page “Writing a batch program to end affinities” on page 134 opens the original 
VTAM ACB with the original GRNAME, unbinds any persisting sessions, and 
closes the ACB. 

3.   Specify the name of the alternative generic resource on the GRNAME system 
initialization parameter, and restart CICS.

Setting up inter-sysplex communications between generic resources 
This section describes communications between CICS Transaction Server for z/OS 
generic resources in partner sysplexes. You must use APPC parallel-session 
connections for links between CICS TS for z/OS generic resources. 

Establishing connections between CICS TS for z/OS generic 
resources 

Assume that you have two sysplexes, SYSPLEXL and SYSPLEXR, and that these 
contain the CICS TS for z/OS generic resource groups CICSL and CICSR, 
respectively. 

 

128 CICS TS for z/OS 4.1: Intercommunication Guide



About this task 

This is illustrated by Figure 36 on page 130. The steps involved in establishing 
connections between CICSL and CICSR are as follows: 
1.   On each member of CICSL that is to initiate a connection to CICSR, statically 

define and install an APPC parallel-session connection in which the NETNAME 
is the generic resource name of CICSR—that is, define a generic resource name 
connection. Similarly, on each member of CICSR that is to initiate a connection 
to CICSL, statically define and install an APPC parallel-session connection in 
which the NETNAME is the generic resource name of CICSL. 

Note: You should not install any predefined connections other than generic 
resource name connections. 
The first attempt by any member of CICSL to acquire a connection to CICSR 
(or vice versa) uses a generic resource name connection. 

2.   The CICSR member to which VTAM sends the bind request searches for the 
generic resource name connection definition for CICSL. (If none exists, it 
autoinstalls one, subject to the normal rules for autoinstalling connections.) 

3.   Subsequent connections that VTAM happens to route to the same member of 
CICSR from different members of CICSL are autoinstalled on the CICSR 
member, using the CICSL member name as the NETNAME; that is, CICS 
autoinstalls member name connections. Similarly, subsequent connections to the 
same member of CICSL from different members of CICSR are autoinstalled on 
the CICSL member, using the CICSR member name as the NETNAME. The 
example in “Example” makes this clearer. 
The template used for autoinstalling these further connections can be any 
installed connection. CICS uses the generic resource name connection as the 
default template. 
If you decide to use a template other than the default for member name 
connections, remember that use of the sessions for these connections is initiated 
by the partner, so consider defining the MAXIMUM option with no contention 
winners. 4 (This is useful because the member name is not known to the 
applications in the system in which the member name connection is 
autoinstalled. They use the GR name for outbound requests. Therefore the 
member name connection is not used for outbound requests and so does not 
need to have any sessions defined as winners. By allowing the partner system 
to have all the sessions as winners, the overhead of bidding for loser sessions is 
avoided.) 
A template is a normal installed connection defined with CONNECTION and 
SESSIONS that can be used solely as a template, or as a real connection. It is 
used as a model from which to autoinstall further connections.

Example 
An example of establishing connections between CICS TS for z/OS generic 
resources. 

In Figure 36 on page 130 through Figure 39 on page 132, each generic resource uses 
the partner sysplex's generic resource name when initiating a connection. All 
generic resource members are able to initiate connections; that is, they all have a 
generic resource name connection (a predefined connection entry in which the 
NETNAME is the generic resource name of the partner sysplex). The connections 

4. The MAXIMUM option of DEFINE SESSIONS is described in “Defining groups of APPC sessions” on page 169. 

 

Chapter 12. Configuring VTAM generic resources 129



are APPC parallel-session synclevel 2 links. 
 

In Figure 36, the first bind that flows from CICSL1 to CICSR is routed to 
whichever member of CICSR VTAM decides is the most lightly loaded. In this 
example it goes to CICSR1. The predefined connections for the generic resource 
names CICSR and CICSL in CICSL1 and CICSR1 are used. 

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL1 with 
CICSR1. When you need to end these affinities, you may or may not need to do so 
explicitly—see “Ending affinities” on page 133 and “APPC connection quiesce 
processing” on page 304. Until the affinities are ended, whenever CICSL1 tries to 
reconnect to CICSR, VTAM routes the request to CICSR1; and whenever CICSR1 
tries to reconnect to CICSL, VTAM routes the request to CICSL1. 

 

SYSPLEXL

GRNAME=CICSL

CICSL1

CICSL2

SYSPLEXR

GRNAME=CICSR

CICSR1

CICSR2

1
Pre-
defined
CICSR

Pre-
defined
CICSR

Pre-
defined
CICSL

Pre-
defined
CICSL

  

Figure 36. The figure shows two sysplexes, SYSPLEXL and SYSPLEXR. Each contains a CICS generic resource 
group. The CICSL1 member of the CICSL group attempts to acquire a connection to a member of the CICSR group in 
SYSPLEXR.

 

130 CICS TS for z/OS 4.1: Intercommunication Guide



Figure 37 shows a bind flow from CICSL2 to CICSR. In this example VTAM has, 
once again, chosen to route it to CICSR1, but it could have gone to one of the other 
members of CICSR. 

The predefined connection for CICSR in CICSL2 is used. CICSR1 looks for the 
connection entry for CICSL. It is already in use, so a new connection is 
autoinstalled using the member name CICSL2. 

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with 
CICSR1. If you need to end these affinities, you may or may not need to do so 
explicitly. 

 

CICSL1

CICSR

CICSL2

CICSR

CICSR1

CICSL

CICSR2

CICSL

GRNAME=CICSL GRNAME=CICSR

1

2 AI
CICSL2

  

Figure 37. Second flow, CICSL2-CICSR

 

Chapter 12. Configuring VTAM generic resources 131



Figure 38 shows a third flow, this time from CICSR1 to CICSL. The existing affinity 
forces it to CICSL1. 

 

CICSL1

CICSR

CICSL2

CICSR

CICSR1

CICSL

CICSR2

CICSL

GRNAME=CICSL GRNAME=CICSR

1

2

3

AI
CICSL2

  

Figure 38. Third flow, CICSR1-CICSL

CICSL1

CICSR

CICSL2

CICSR1

CICSL

CICSR2

GRNAME=CICSL GRNAME=CICSR

1

2

3

CICSR CICSL

4

AI
CICSL2

AI
CICSR2

  

Figure 39. Fourth flow, CICSR2-CICSL

 

132 CICS TS for z/OS 4.1: Intercommunication Guide



Figure 39 on page 132 shows a fourth flow, this time from CICSR2 to CICSL. It can 
go to any member of CICSL, but in this example VTAM routes it to CICSL2. 

The predefined connection entry for CICSL in CICSR2 is not in use and so it is 
used now. CICSL2 looks for the predefined connection entry for CICSR. It is in use, 
and so an entry for CICSR2 is autoinstalled. 

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with 
CICSR2. If you need to end these affinities, you may or may not need to do so 
explicitly. 

Ending affinities 
When a session is established with a member of a generic resource, VTAM creates 
an association called an affinity between the generic resource member and the 
partner LU, so that it knows where to route subsequent flows. 

In most cases, VTAM ends the affinity when all activity on the session has ceased. 
However, for some types of session, VTAM assumes that resynchronization data 
may be present, and therefore relies on CICS to end the affinity. The sessions 
affected are: 
v   APPC synclevel 2 sessions 
v   APPC sessions using limited resource support 
v   LU6.1 sessions.

In VTAM terms, the CICS generic resource member “owns” the affinity and is 
responsible for ending it. The affinity persists even after a connection has been 
deleted or CICS has performed an initial or cold start. For a connection between two 
generic resources, both partners own an affinity, and each must be ended. For APPC 
connections between CICS TS OS/390, Version 1.3 or later regions, the APPC 
connection quiesce protocol does this automatically—see “APPC connection 
quiesce processing” on page 304. For other connections, the affinities must be 
ended explicitly. 

CICS provides commands that can be used to end affinities explicitly: 
v   You can use SET CONNECTION ENDAFFINITY when there is an installed 

connection definition. 
v   You can use PERFORM ENDAFFINITY after an autoinstalled connection has 

been deleted, as well as when it is still present. You must supply the NETNAME 
(and, if the connection has been deleted, the NETID) of the remote system. The 
NETNAME is the name by which the remote system is known to VTAM. (Note 
that, if the remote system is also a generic resource, the NETNAME is always 
the member name, even if the connection was defined using the generic resource 
name.)

These commands are valid only for LU6.1 and APPC connections. The connection, 
if present, must be out of service and its recovery status (as shown by the 
RECOVSTATUS option of the INQUIRE CONNECTION command) must be 
NORECOVDATA. Note that only those affinities that are owned by CICS can be 
ended by CICS. 

CICS has no certain knowledge that an affinity exists for a given connection. To 
help you, message DFHZC0177 is issued whenever there is a possibility that an 

 

Chapter 12. Configuring VTAM generic resources 133



affinity has been created that you may have to end explicitly. This message gives 
the NETNAME and NETID to be used on the PERFORM ENDAFFINITY 
command. 

Having received message DFHZC0177, to check whether an affinity that must be 
ended explicitly does indeed exist, you can use the SNA D NET,GRAFFIN command. 
This command produces messages IST1706 and IST1707, which should contain the 
information you need. Alternatively, the MVS/ESA Version 5 Interactive Problem 
Control System (IPCS) Commands manual, GC28-1491, tells you how to produce a 
dump of the VTAM ISTGENERIC data area. This contains SPTE records that show 
which affinities exist. For example, start the dump with: 
DUMP COMM=(title) 

Reply with: 
r xx ,STRLIST=(STRNAME=ISTGENERIC, 
                  ACC=NOLIMIT,(LNUM=ALL,ADJ=CAP,EDATA=SER)) 

Look at the dump with: 
STRDATA DETAIL ALLSTRS ALLDATA 

If a request to end an affinity is rejected by VTAM because no such affinity exists, 
message DFHZC0181 is issued. This may mean either that you supplied an 
incorrect NETNAME or NETID, or that you (or CICS) were wrong in supposing 
that an affinity existed. 

When should you end affinities? 
You need to end affinities if you reconfigure your sysplex. 

For example, you must end any relevant affinities before you do any of the 
following: 
v   Change the name of a generic resource. 
v   Change a generic resource name connection to a member-name connection. 
v   Change a parallel-session connection to a single-session connection. 
v   Remove systems from a generic resource. If you remove a system from a generic 

resource and do not end its affinities, VTAM treats it as though it were still a 
member of the generic resource.

Note: For connections between generic resources, you must end the affinities 
owned by both generic resources. 

Writing a batch program to end affinities 
If a generic resource member that owns affinities fails and cannot be recovered, the 
affinities must be ended. 

In a case like this, you cannot use the SET CONNECTION ENDAFFINITY or 
PERFORM ENDAFFINITY commands. Instead, you can use a batch program to 
clear the affinities owned by the failed member. This section demonstrates how to 
write such a batch program. The program must be written in assembler language. 

Note: You can use the dump technique described in the MVS/ESA Version 5 
Interactive Problem Control System (IPCS) Commands manual to discover what 
affinities the failed generic resource member owns. 

Important:  

 

134 CICS TS for z/OS 4.1: Intercommunication Guide



You should use this technique only if it is impossible to restart the failed CICS 
system. 

Program input 
You need to specify the following input parameters to the program. 
v   Member name (in the generic resource group) of the failed system 
v   Generic resource name of the failed system 
v   APPLID of the partner system 
v   NETID of the partner system.

Program output 
The program uses the VTAM CHANGE OPTCD=ENDAFFIN macro to end the 
affinities. 

The program uses the VTAM CHANGE OPTCD=ENDAFFIN macro to end the 
affinities. You will probably need to produce a report on the success or failure of 
this and the other VTAM macro calls that the program uses. Consult the OS/390 
eNetwork Communications Server: SNA Programming manual for the meaning of 
RTNCD/FDB2 values. 

Processing 
The program needs to perform the following processing. 

About this task 
1.   Reserve storage for the following: 
v   The ACB of the failed sysplex member: 

acb-name ACB AM=VTAM, 
             PARMS=(PERSIST=YES) 

Note that the above example assumes that you are using persistent sessions. 
v   The RPL, which is required by the VTAM macros: 

rpl-name RPL   AM=VTAM,OPTCD=(SYN) 

v   The NIB, which is required by the CHANGE OPTCD=ENDAFFIN macro: 
nib-name NIB 

2.   Issue a VTAM OPEN command for the ACB of the member which owns the 
affinity, passing the input APPLID for this member. 

3.   If any sessions persist, use the VTAM SENDCMD macro to terminate them. (If 
you are not using persistent sessions this will not be necessary.) 
a.   Move the following command to an area in storage. In this example, applid1 

is the member name of the failed member and applid2 is the APPLID of the 
partner system. 
’VARY NET,TERM,LU1=applid1,LU2=applid2,TYPE=FORCE,SCOPE=ALL’ 

b.   Issue the SENDCMD macro, as in the example below. In this example: 
v   rpl-name is the name of an RPL. 
v   acb-name is the ACB of the failed sysplex member. 
v   output-area is the name an area in storage where the VARY command is 

held. 
v   command-length is the length of the command.
SENDCMD  RPL=rpl-name, 
   ACB=acb-name, 
   AREA=output-area, 
   RECLEN=command-length, 
   OPTCD=(SYN) 

 

Chapter 12. Configuring VTAM generic resources 135



4.   Use the VTAM RCVCMD macro to receive messages from VTAM. Note that 
RCVCMD must be issued three times after the SENDCMD to be sure that the 
VARY command worked correctly. In the following example: 
v   rpl-name and acb-name are as described above. 
v   input-area is the area of storage into which the message is to be received. 
v   receive_length is the length of data to be received.
RCVCMD  RPL=rpl-name, 
   ACB=acb-name, 
   AREA=input-area, 
   AREALEN=receive-length, 
   OPTCD=(SYN,TRUNC) 

5.   Issue this command twice more to make sure of receiving all the output from 
VTAM. 

6.   Issue the VTAM CHANGE OPTCD=ENDAFFIN macro to end the affinity. 
Before issuing the macro the following fields must be initialized in the NIB: 
v   NIBSYM is set to the APPLID of the partner system. 
v   NIBGENN is set to the generic resource name of the failed system. 
v   NIBNET is set to the NETID of the partner system.
CHANGE  RPL=rpl-name, 
        ACB=acb-name, 
        NIB=nib-name, 
        OPTCD=(SYN,ENDAFFIN) 

7.   Issue the VTAM CLOSE command for the ACB.

Results

Programming notes:  

1.   The VTAM commands should be synchronous, to avoid the use of exits 
(OPTCD=SYN). 

2.   Care must be taken not to run the program for an APPLID of a running CICS. 
If you do, and you are using VTAM persistent sessions, a predatory takeover will 
occur—that is, your program will assume control of the sessions belonging to 
the APPLID.

JCL for submitting the ENDAFFINITY program 
This is an example of JCL for submitting the ENDAFFINITY program. 

   
//JOBNAME   JOB 1,userid, 
// NOTIFY=userid,CLASS=n,MSGLEVEL=(n,n),MSGCLASS=n,REGION=1024K 
//* 
//JOBLIB    DD DSN=loadlib-name,DISP=SHR 
//* 
//******************************************************************* 
//* PARM=’FAILED_APPLID,FAILED_GENERIC,PARTNER_NETID,PARTNER_APPLID’ 
//******************************************************************* 
//* 
//RUN    EXEC PGM=ENDAFFIN,PARM=’parm1,parm2,parm3,parm4’ 
//* 
//REPORT    DD SYSOUT=* 
//SYSPRINT  DD SYSOUT=* 
// 
 
Figure 40. Example JCL for submitting the ENDAFFINITY program

 

136 CICS TS for z/OS 4.1: Intercommunication Guide



Using ATI with generic resources 
Automatic transaction initiation (ATI) is the process whereby a transaction is 
started by a request made internally within the CICS system, rather than by a 
terminal end-user entering a transaction name. 

This can happen when, for example, an application program issues an EXEC CICS 
START command, or the trigger level on a transient data queue is reached. Often 
the started transaction is associated with a terminal, which may or may not be 
owned by the region in which the transaction runs. 

ATI is described in “Traditional routing of transactions started by ATI” on page 69. 
In particular, “Traditional routing of transactions started by ATI” on page 69 
describes how CICS invokes the “terminal not known” global user exits, XICTENF 
and XALTENF, to deal with the situation where the terminal is not defined to the 
AOR. 

When an automatic transaction initiation (ATI) request is issued in an 
application-owning region (AOR) for a terminal that is logged on to a TOR, CICS 
uses the terminal definition in the AOR to determine the TOR to which the request 
should be shipped. If there is no definition of the terminal in the AOR, you may be 
able to use the “terminal-not-known” global user exits (XICTENF and XALTENF) 
to supply the name of the TOR. 

However, if a user logs on to a generic resource (using a generic resource name), 
VTAM may connect his or her terminal to any of the regions in the generic 
resource. If the user then logs off and on again, VTAM may connect his terminal to 
the same region, or to a different one. In this situation, the terminal definition in 
the AOR may not reflect the correct location of the terminal; and your 
terminal-not-known exit program has no way of knowing the correct destination 
for the ATI request. 

CICS solves this problem by using VTAM's knowledge of where the terminal is 
logged on, to ship the ATI request to the correct TOR: 
1.   First, the ATI request is shipped to the TOR specified in the remote terminal 

definition (or specified by the terminal-not-known exit)—we shall call this the 
“first-choice TOR”. If the terminal is logged on to the first-choice TOR, the ATI 
request completes as normal. 

2.   If the terminal cannot be located on the first-choice TOR, the TOR asks VTAM 
for the applid of the generic resource member where the terminal is logged on. 
If the terminal is not logged on to any applid within the generic resource 
group, the ATI request fails. 
If the terminal is located on the first-choice TOR but not logged on, the TOR 
asks VTAM for the applid of the generic resource member where the terminal 
is logged on. If the terminal is not logged on to any applid within the generic 
resource group, the ATI request is scheduled on the first-choice TOR. If the 
terminal is logged on to a different applid within the generic resource group, 
this information is passed to the AOR, and the ATI request is shipped to the 
correct TOR. 

3.   If the first-choice TOR is not available (and such an inquiry is possible) the 
AOR asks VTAM for the location of the terminal. The inquiry is possible when 
all of the following are true: 
v   The VTAM in the AOR is version 4.2 or later (that is, it supports generic 

resources). 

 

Chapter 12. Configuring VTAM generic resources 137



v   The AOR was started with the VTAM system initialization parameter set to 
'YES'. 

v   The VTAM generic resource name where the terminal may be logged on is 
known to the AOR. Such information is obtained from the skeleton TCTTE 
representing the remote terminal. If the first choice TOR name has been 
supplied by the user terminal-not-known exit, such an inquiry is not 
possible. Note that the inquiry will fail if the terminal is not logged on to the 
VTAM generic resource name found in the skeleton TCTTE.

If the AOR is in one network and the TORs in another, the inquiry fails. 
If the inquiry is successful, the ATI request is shipped to the TOR where the 
terminal is logged on.

VTAM knows the terminal by its netname, not by its CICS terminal identifier 
(TERMID). If there is a terminal definition in the AOR at the time the START is 
issued, CICS obtains the netname from that definition. If there is not, your 
terminal-not-known exit program should return: 
v   A netname that VTAM can use to locate the terminal 
v   The name of a connection to any member of the generic resource that is likely to 

be active.

Note:  

1.   If CICS has no netname for the terminal, the ATI request is shipped to the 
first-choice TOR, and the termid is used to locate the terminal. If the terminal 
cannot be found on the first-choice TOR, the ATI request fails. 

2.   Because CICS uses the terminal's netname to find its location in the generic 
resource group, the ATI request will still work if, on the second or subsequent 
logon, the termid changes (for instance, if the autoinstall user program does not 
implement a consistent mapping between netname and termid). 

3.   The ATI support described in this section applies only to terminals that use the 
generic name to log on to a generic resource. If a user logs on to a TOR using 
the member name, CICS does not attempt to discover from VTAM to which 
TOR the terminal is connected. 

4.   The ATI support described in this section does not apply to ATI to an APPC 
connection. 

5.   The TORs can use autoinstall or CEDA-defined terminal definitions. 
The AORs must not use CEDA-defined remote terminal definitions. If 
CEDA-defined terminals are used, the ATI request will always be shipped to 
the first-choice TOR and will not be re-routed to a different TOR within the 
same VTAM generic resource group, even though the terminal may be logged 
on to another TOR.

Example 1:  

1.   A user logs on using the generic resource name CICS, which is the name of a 
set of TORs (TOR1 through TOR6). The user is connected to TOR1, because it is 
the most lightly loaded. 

2.   The user runs a transaction, which is routed to an AOR, AOR1. The terminal 
definition is shipped to AOR1. 

3.   The transaction issues an EXEC CICS START request, to start another 
transaction, after an interval, against the same terminal. The second transaction, 
like the first, is located on AOR1. 

4.   After the first transaction has completed, the user logs off; and logs on again 
later to collect the output from the second transaction. When logging on the 

 

138 CICS TS for z/OS 4.1: Intercommunication Guide



second time, again using the generic resource name CICS, the user is connected 
to TOR2 because that is now the most lightly loaded. 

5.   The interval specified on the START request expires. However, the terminal is 
no longer defined to TOR1. The shipped terminal definition has not yet been 
deleted from AOR1 by the timeout delete mechanism.

v   Result: 

Because the shipped definition of the user's terminal still exists on AOR1, AOR1 
ships the ATI request to TOR1 (the TOR referenced in the definition). Because 
the terminal is not logged on to TOR1, TOR1 queries VTAM and returns the 
result to AOR1. AOR1 then ships the request to the correct TOR (TOR2).

Example 2:  

1.   A user logs on using the generic resource name CICS, which is the name of a 
set of TORs (TOR1 through TOR6). The user is connected to TOR1, because it is 
the most lightly loaded. 

2.   The user runs a transaction, which is routed to an AOR, AOR1. The terminal 
definition is shipped to AOR1. 

3.   The transaction does some asynchronous processing—that is, it starts a second 
transaction, which happens to be on another AOR, AOR2. After it has finished 
processing, the second transaction is to reinvoke the original transaction to send 
a message to the user-terminal at TOR1. 

4.   The user logs off while the application is in process, and logs on again later to 
collect the message. When logging on the second time, again using the generic 
resource name CICS, the user is connected to TOR2 because that is now the 
most lightly loaded. 

5.   The second transaction completes its processing, and issues an EXEC CICS 
START command to reinvoke the original transaction, in conjunction with the 
original terminal. The START request is shipped to AOR1. However, the 
terminal is no longer defined to TOR1, and the shipped terminal definition has 
been deleted from AOR1 by the timeout delete mechanism.

v   Result: 

Because the shipped terminal definition has been deleted from AOR1, CICS 
invokes the XICTENF and XALTENF exits. Your exit program should return: 
–   The netname of the user's terminal 
–   The name of a connection to any member of the generic resource that is likely 

to be currently active.
CICS is then able to query VTAM, as described in Example 1, and ship the 
request to the correct TOR (TOR2).

Using the ISSUE PASS command 
The EXEC CICS ISSUE PASS command can be used to disconnect a terminal from 
CICS and transfer it to the VTAM application specified on the LUNAME option. 

For example, to transfer a terminal from this CICS to another terminal-owning 
region, you could issue the command: 

EXEC CICS ISSUE PASS 
LUNAME(applid) 

where applid is the applid of the TOR to which the terminal is to be transferred. 

 

Chapter 12. Configuring VTAM generic resources 139



When your TORs are members of a generic resource group, you can transfer a 
terminal to any member of the group by specifying LUNAME as the generic 
resource name. For example: 

EXEC CICS ISSUE PASS LUNAME(grname) 

where grname is the generic resource name. VTAM transfers the terminal to the 
most lightly-loaded member of the generic resource. (If the system that issues the 
ISSUE PASS command is itself the most lightly-loaded member, VTAM transfers 
the terminal to the next most lightly-loaded member.) 

Note that, if the system that issues an ISSUE PASS LUNAME(grname) command is 
the only CICS currently registered under the generic resource name (for example, 
the others have all been shut down), the ISSUE PASS command does not fail with 
an INVREQ. Instead, the terminal is logged off and message DFHZC3490 is written 
to the CSNE log. You can code your node error program to deal with this situation. 
For advice on coding a node error program, see the CICS Customization Guide. 

If you need to transfer a terminal to a specific TOR within the CICS generic 
resource group, you must specify LUNAME as the member name—that is, the 
CICS APPLID, as in the first example command. 

Rules checklist 
Here is a checklist of the rules that govern CICS use of the VTAM generic 
resources function. 
v   Generic resource names must be unique in the network. 
v   A CICS region cannot be both a member of a generic resource and an XRF 

partner. 
v   A CICS region that is a member of a generic resource can have only one generic 

resource name and only one applid. 
v   A generic resource name cannot be the same as a VTAM applid in the network. 
v   Within a generic resource, member names only must be used. There must be no 

definitions in any of the members of the generic resource for the generic 
resource name. 

v   Non-LU6 devices that require sequence number resynchronization cannot log on 
using the generic resource name. They must use the applid and therefore cannot 
take advantage of session balancing. 

v   APPC connections to a generic resource that are initiated by the partner (that is, 
on which the non-generic resource sends the first bind) can log on using a 
member name. 

v   For LU6.1 connections initiated by a generic resource member, the partner must 
know the member by its generic resource name. 
Therefore, you are strongly recommended not to try to access the same LU6.1 
partner from more than one member of a generic resource. 

v   For APPC connections initiated by a generic resource member, where the partner 
is not itself a member of a CICS Transaction Server for z/OS generic resource, 
the partner must know the member TOR by its generic resource name. 
Therefore, you are strongly recommended not to try to access such partners from 
more than one member of a generic resource. 

v   A system cannot statically define both an APPC generic resource name 
connection and an APPC member name connection to the same generic resource. 

 

140 CICS TS for z/OS 4.1: Intercommunication Guide



(Generic resource name connections and member name connections are 
described in “Establishing connections between CICS TS for z/OS generic 
resources” on page 128.) 
Furthermore, all members of a generic resource must choose the same method. 
That is (for statically-defined APPC connections to a partner generic resource), 
they must all use member name connections or all use generic resource name 
connections.

Dealing with special cases 
This section describes some special cases that you may need to consider. 

Note that much of the information applies only to links to back-level 
systems—where, for example, you are initiating a connection to a non-CICS TS 
for z/OS system. For connections between CICS TS for z/OS generic resources, 
much of the following information can be disregarded. 

Non-autoinstalled terminals and connections 
Because members of a generic resource should be functionally equivalent, it is not 
recommended that you should predefine terminals to specific members of a 
generic resource. 

Important:  

Use autoinstall instead, and allow VTAM to balance the TORs' workload 
dynamically. However, there may be times—for example, while you are migrating 
an existing TOR into a generic resource—when it is necessary to use static 
definitions. 

If an LU is predefined to a specific terminal-owning region, and the LU initiates 
the connection (that is, it sends the first bind request) using the TOR's generic 
resource name, the generic resource function must make the connection to the 
“correct” terminal-owning region—the one that has the definition. This 
requirement means that you must install the VTAM generic resource resolution exit 
program, ISTEXCGR, to enforce selection of the correct applid (for the 
terminal-owning region). 

Note that this is not necessary if the connection is always initiated by the 
terminal-owning region (by means, for example, of a START request). 

A sample ISTEXCGR exit program is supplied with VTAM 4.2. For details, see the 
OS/390 eNetwork Communications Server: SNA Customization manual. 

Outbound LU6 connections 
This section discusses outbound LU6 connections from TORs that are members of a 
generic resource group. By “outbound” we mean connections to systems outside 
the CICSplex. 

Using a “hub” 
For LU6 connections initiated by a generic resource member, where the partner 
is not itself a CICS Transaction Server for z/OS generic resource, the partner 
must know the member TOR by its generic resource name. 

The requirement therefore applies when a generic resource member initiates any of 
the following kinds of connection: 

 

Chapter 12. Configuring VTAM generic resources 141



v   APPC connections to single systems 
v   APPC connections to members of a CICSplex that are not also generic resource 

members 
v   All LU6.1 connections.

Because (unless the partner is also a CICS TS for z/OS generic resource) an 
attempt by a generic resource member to connect to an LU6 partner will succeed 
only if the partner knows the TOR by its generic resource name, it follows that the 
partner can accept a connection to only one member of the generic resource at a 
time. In a configuration in which more than one member of a generic resource 
must connect to a remote system, you can choose a region within the CICSplex to 
act as a network hub. This means that all generic resource members daisy-chain 
their requests for services from remote systems through the hub. 

The network hub can be a member of the generic resource, in which case it is 
necessary to install a VTAM generic resource resolution exit program to direct any 
incoming binds from LU6 partners that know us by our generic resource name to 
the network hub region. 

An alternative solution is to have a network hub that is not a member of the 
generic resource. This avoids the need for the VTAM generic resource resolution 
exit program, but requires that LU6 partners that may initiate connections to the 
CICSplex log on using the applid of the network hub region. 

Figure 41 on page 143 shows a network hub that is not a member of the generic 
resource. 
 

 

142 CICS TS for z/OS 4.1: Intercommunication Guide



In Figure 41, the regions in CICSplex CIC1 are connected by MRO links. The 
terminal-owning regions T1, T2, and T3 are members of the generic resource 
group, CICSG, but the hub TOR, H, is not. H has an LU6.1 or APPC connection to 
the remote region, R. The TORs daisy-chain their requests to R through H. 

AOR

AOR

AOR

TOR

T1

TOR

T2

TOR

CICSG

CICSG

CICSG

T3A3

A2

A1

HUB
TOR

H R H R
LU6

System that is
not a member
of a CICSTS z/OS
generic resource

CICSTransaction Server for z/OS CICSplex CIC1

GRNAME=CICSG

MRO
links

MRO

MRO

MRO

  

Figure 41. A network hub. Hubs are typically used for outbound LU6 requests from members of a generic resource 
group to a system that is not a member of a CICS Transaction Server for z/OS generic resource.

 

Chapter 12. Configuring VTAM generic resources 143



144 CICS TS for z/OS 4.1: Intercommunication Guide



Part 3. Defining intercommunication resources 

This part tells you how to define the various resources that may be required in a 
CICS intercommunication environment. CICS resources are defined using resource 
definition online (RDO). 

For further information about resource definition, see What is resource definition?, 
in the CICS Resource Definition Guide. 

Chapter 13, “How to define connections to remote systems,” on page 147 tells you 
how to define links to remote systems. The links described are: 
v   MRO links to other CICS regions 
v   MRO links for use by the external CICS interface 
v   IP interconnectivity (IPIC) links for use with distributed program link 
v   Multi-session APPC links to other APPC systems (CICS or non-CICS) 
v   Single-session APPC links to APPC terminals 
v   LUTYPE6.1 links to IMS systems.

Chapter 15, “Managing APPC connections,” on page 193 tells you how to manage 
APPC links using the master terminal transaction (CEMT). 

Chapter 16, “Defining remote resources,” on page 203 tells you how to define 
remote resources to the local CICS system. The resources can be: 
v   Remote files 
v   Remote DL/I PSBs 
v   Remote transient-data queues 
v   Remote temporary-storage queues 
v   Remote terminals 
v   Remote APPC connections 
v   Remote programs 
v   Remote transactions.

Chapter 17, “Defining local resources,” on page 229 tells you how to define local 
resources for ISC and MRO. In general, these resources are those that are required 
for ISC and MRO and are obtained by including the relevant functional groups in 
the appropriate tables. However, you have the opportunity to modify some of the 
supplied definitions and to provide your own communication profiles. 

 

© Copyright IBM Corp. 1977, 2011 145



146 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 13. How to define connections to remote systems 

You can define and manage different types of connections between CICS regions or 
from CICS regions to non-CICS systems. 

The types of connection that you can create are as follows: 
v   Connections for multiregion operation (MRO) 
v   Connections for use by the external CICS interface (EXCI) 
v   IPIC connections to remote CICS TS for z/OS, Version 3.2, or later, regions 
v   ISC over SNA connections to remote systems, using logical unit type 6.2 (APPC) 

protocols 
v   ISC over SNA connections to remote IMS systems, using logical unit type 6.1 

protocols 
v   Indirect connections for CICS transaction routing

Connections using the ACF/VTAM application-to-application facilities are treated 
exactly as though they are intersystem connections and can be defined as either 
LUTYPE6.1 or APPC links. 

This section contains the following topics: 
v   “Introduction to connection definition” 
v   “Identifying remote systems” on page 150 
v   “Defining links for multiregion operation” on page 161 
v   “Defining links for use by the external CICS interface” on page 165 
v   “Defining IP interconnectivity (IPIC) connections” on page 150 
v   “Defining APPC connections” on page 167 
v   “Defining logical unit type 6.1 links” on page 175 
v   “Defining CICS-to-IMS LUTYPE6.1 links” on page 176 
v   “Defining indirect links for transaction routing” on page 182 
v   “Generic and specific applids for XRF” on page 187.

Introduction to connection definition 
You can define different types of connections in CICS. You can use MRO and ISC 
over SNA (APPC and LUTYPE 6.1) connections or IP interconnectivity (IPIC) over 
TCP/IP connections. 

MRO and ISC over SNA connections 

The definition of an MRO or ISC over SNA connection to a remote system consists 
of two parts: 
v   The definition of the remote system itself 
v   The definition of sessions with the remote system

The remote system is defined by the DEFINE CONNECTION command. Each session, 
or group of parallel sessions, is defined by the DEFINE SESSIONS command. The 
definitions of the remote system and the sessions are always separate and are not 
associated with each other until they are installed. 

 

© Copyright IBM Corp. 1977, 2011 147



For single-session APPC terminals, you can use an alternative method of definition 
by using the DEFINE TERMINAL and DEFINE TYPETERM commands. 

If the remote system is a CICS region or any other system that uses resource 
definition to define intersystem sessions, for example, IMS, the connection 
definition must match a compatible definition in the remote system. For remote 
systems with little or no flexibility in their session properties, for example, APPC 
terminals, the connection definition must match the fixed attributes of the remote 
system concerned. 

IPIC connections 

The definition of an IPIC connection between two CICS regions consists of two 
parts: 
v   The definition of the outbound attributes of the connection, including the target 

CICS region 
v   The definition of the inbound attributes of the connection, including the port 

number that CICS listens for requests

The local CICS region name 
A CICS Transaction Server for z/OS region can be known by more than one name. 
v   Application identifier (APPLID) 
v   System identifier (SYSID) 
v   VTAM generic resource name 

All CICS regions have an APPLID and a SYSID. A terminal-owning region that is a 
member of a VTAM generic resource group also has a VTAM generic resource 
name. VTAM generic resource names are described in Chapter 12, “Configuring 
VTAM generic resources,” on page 121. 

APPLID of the CICS region 

The APPLID of a CICS system is the name by which it is known in the 
intercommunication network; that is, its netname. 
v   For MRO, CICS uses the APPLID name to identify itself when it signs on to the 

CICS interregion SVC, either during startup or in response to a SET IRC OPEN 
command. 

v   For ISC over SNA, the APPLID is used on a VTAM APPL statement, to identify 
CICS to VTAM. 

v   For IPIC, the APPLID option of an IPCONN definition identifies the APPLID of 
the remote system.

You specify the CICS APPLID on the APPLID system initialization parameter. The 
default value is DBDCCICS. This value can be overridden during CICS startup. 

Within a z/OS sysplex, the APPLID of each CICS region must be unique. If your 
CICS regions are not part of a sysplex, if your network consists of more than one 
sysplex, or if your CICS regions communicate with systems outside the local 
sysplex, it is advisable to keep APPLIDs unique across the network if possible. If 
your network does contain systems with identical APPLIDs, on IPIC connections 
you can specify the NETWORKID option; this unique value enables you to connect 
to two or more remote regions that have identical APPLIDs. 

 

148 CICS TS for z/OS 4.1: Intercommunication Guide



Note: CICS systems that use XRF have two APPLIDs to distinguish between the 
active and alternate systems. This special case is described in “Generic and specific 
applids for XRF” on page 187. 

SYSID of the CICS region 

The SYSID of a CICS region is a name (1–4 characters) known only to the CICS 
region itself. 

It is obtained (in order of priority) from: 
1.   The startup override 
2.   The SYSIDNT operand of the DFHSIT macro 
3.   The default value CICS.

Note: The SYSID of your CICS region might also have to be specified in the 
DFHTCT TYPE=INITIAL macro if you are using macro-level resource definition. 
The only purpose of the SYSIDNT operand of DFHTCT TYPE=INITIAL is to 
control the assembly of local and remote terminal definitions in the terminal 
control table. The SYSID of a running CICS region is always the one specified by 
the system initialization parameters. 

The applid of the local CICS system 
The applid of a CICS system is the name by which it is known in the 
intercommunication network; that is, its netname. 

For MRO, CICS uses the applid name to identify itself when it signs on to the 
CICS interregion SVC, either during startup or in response to a SET IRC OPEN 
master terminal command. 

For ISC over SNA, the applid is used on a VTAM APPL statement, to identify 
CICS to VTAM. 

For IPIC, the APPLID option of an IPCONN definition identifies the applid of the 
remote system. 

You specify the CICS applid on the APPLID system initialization parameter. The 
default value is DBDCCICS. This value can be overridden during CICS startup. 

Within a z/OS sysplex, the applid of each CICS region must be unique. If your 
CICS regions are not part of a sysplex, if your network consists of more than one 
sysplex, or if your CICS regions communicate with systems outside the local 
sysplex, it is advisable to keep applids unique across the network, if this is 
possible. If your network does contain systems with identical applids, on IPIC 
connections you can specify the NETWORKID option; this unique value enables 
you to connect to two or more remote systems that have identical applids. 

Note: CICS systems that use XRF have two applids, to distinguish between the 
active and alternate systems. This special case is described in “Generic and specific 
applids for XRF” on page 187. 

The sysidnt of the local CICS system 
The sysidnt of a CICS system is a name (1–4 characters) known only to the CICS 
system itself. 

It is obtained (in order of priority) from: 

 

Chapter 13. How to define connections to remote systems 149



1.   The startup override 
2.   The SYSIDNT operand of the DFHSIT macro 
3.   The default value CICS.

Note: The sysidnt of your CICS system may also have to be specified in the 
DFHTCT TYPE=INITIAL macro if you are using macro-level resource definition. 
The only purpose of the SYSIDNT operand of DFHTCT TYPE=INITIAL is to 
control the assembly of local and remote terminal definitions in the terminal 
control table. (Terminal definition is described in Chapter 16, “Defining remote 
resources,” on page 203.) The sysidnt of a running CICS system is always the one 
specified by the system initialization parameters. 

Identifying remote systems 
In addition to having a sysidnt for itself, a CICS system requires a sysidnt for 
every other system with which it can communicate. Sysidnt names are used to 
relate session definitions to system definitions; to identify the systems on which 
remote resources, such as files, reside; and to refer to specific systems in 
application programs. 

Sysidnt names are private to the CICS system in which they are defined; they are 
not known by other systems. In particular, the sysidnt defined for a remote CICS 
system is independent of the sysidnt by which the remote system knows itself; you 
need not make them the same. 

The mapping between the local (private) sysidnt assigned to a remote system and 
the applid by which the remote system is known globally in the network (its 
netname), is made when you define the intercommunication link. For example, for 
an MRO or ISC over SNA connection, on the CONNECTION definition you would 
specify: 
  DEFINE CONNECTION(sysidnt) The local name for the remote system 
         NETNAME(applid)     The applid of the remote system 

For an IPIC connection, on the IPCONN definition you would specify: 
  DEFINE IPCONN(sysidnt)  The local name for the remote system 
         APPLID(applid)  The applid of the remote system 

Each sysidnt name defined to a CICS system must be unique. 

Defining IP interconnectivity (IPIC) connections 
You can define TCP/IP connections so that you can communicate with a remote 
CICS region by using IP interconnectivity (IPIC). 

Before you begin

Restriction: IPIC supports specific intercommunication functions and releases. See 
the related links for this topic for more information. 

TCP/IP services must be active in the CICS regions. You can activate TCP/IP 
services by setting the TCPIP system initialization parameter to YES. 

 

150 CICS TS for z/OS 4.1: Intercommunication Guide



About this task 

To define an IPIC connection, you define two resources, IPCONN and 
TCPIPSERVICE, on each CICS region that you want to connect. You can either 
define new IPIC connections using CEDA or CICSPlex SM, or you can migrate 
your existing APPC connections. 

Procedure 
1.   Define an IPCONN resource definition on the local CICS region. 

a.   Specify the IPCONN name. Specify a 4-character IPCONN name with four 
trailing spaces for CICS-to-CICS communications. 

b.   Specify the host name in the HOST attribute, using the value that is 
specified in the TCPIPSERVICE definition of the remote CICS region. For 
example, hostb.example.com The host name can be up to 116 characters in 
length, or can be an IPv4 or IPv6 address. If you specify an IPv6 address (or 
a host name that resolves to an IPv6 address), ensure that you are operating 
in a dual-mode (IPv4 and IPv6) environment and that the client or server 
that you are communicating with is also operating in a dual-mode (IPv4 
and IPv6) environment. 

c.   Specify in the PORT attribute the port number on which the remote CICS 
region will listen. Specify NO if this IPCONN resource is not used for 
outbound requests and you are using the CICS Transaction Gateway. 

d.   Specify the name of the TCPIPSERVICE resource on the local CICS region 
that defines the inbound attributes of the IPIC connection as the value for 
the TCPIPSERVICE attribute. 

e.   Optional: Specify values for the APPLID and NETWORKID attributes if you 
want to connect to a remote system that is in a different network. The 
combination of APPLID and NETWORKID attributes ensures that the 
remote CICS region is referred to by a unique name. 

f.   Optional: Specify YES or NO for the INSERVICE attribute to set if you want 
the connection to be available when the resource is defined. 

g.   Specify values for the RECEIVECOUNT and SENDCOUNT attributes to set 
how many receive and send sessions are allowed for the IPIC connection.

 For detailed explanations of all the available attributes for this resource, see the 

CICS Resource Definition Guide. 
2.   Define a TCPIPSERVICE resource definition to receive inbound requests on the 

local CICS region. The name of the TCPIPSERVICE resource must match the 
value of the TCPIPSERVICE attribute for the IPCONN resource. 
a.   Specify the IP address of the local CICS region in the HOST attribute. The 

host name can be up to 116 characters in length, or can be an IPv4 or IPv6 

DEFINE 
  IPCONN(CICB)                    local name for connection 
  GROUP(groupname)                groupname of related definitions 
  HOST(hostb.example.com)         host name of remote system 
  PORT(32022)                     port number that remote region will 
                                  listen on 
  TCPIPSERVICE(TSA)               name of a PROTOCOL(IPIC) TCPIPSERVICE that 
                                  defines the attributes of inbound requests 
  APPLID(AOR001)                  SIT APPLID of the remote system 
  INSERVICE(YES) 
  RECEIVECOUNT(20)                the number of receive sessions 
  SENDCOUNT(20)                   the number of send sessions 
 
Figure 42. Example IPCONN definition for an IPIC connection

 

Chapter 13. How to define connections to remote systems 151



address. If you use an IPv6 address, ensure that you are operating in a 
dual-mode environment and that the client or server that you are 
communicating with is also operating in a dual-mode environment. 

b.   Specify a port number on which the local CICS region listens for incoming 
client requests in the PORT attribute. 

c.   Specify IPIC for the PROTOCOL attribute. 
d.   Specify NO for the SOCKETCLOSE attribute. 
e.   Specify the 4-character ID of the CICS transaction that runs the DFHISCOP 

program as the value of the TRANSACTION attribute. The default 
transaction for IPIC is CISS. 

f.   Optional: Specify the name of the IPCONN autoinstall user program as the 
value of the URM attribute. If you do not specify this attribute, CICS uses 
the CICS-supplied default IPCONN autoinstall user program, DFHISAIP. 
Specify NO to disable autoinstall.

 For detailed explanations of all the attributes of TCPIPSERVICE definitions, see 

the CICS Resource Definition Guide. 
3.   If you are using DPL calls, define or change the PROGRAM resource definition 

for the DPL program to use an IPIC connection. Specify the name of the 
IPCONN resource definition as the value for the REMOTESYSTEM attribute. 

4.   Define a TCPIPSERVICE resource definition on the remote CICS region. 
5.   Define an IPCONN resource definition on the remote CICS region. Specify 

AUTOCONNECT(YES) to establish the connection between the two CICS 
regions.

Results 

When the resources are defined and enabled on the local and remote CICS regions, 
the connection is established between the CICS regions. 

What to do next 

You can use the IBM CICS Explorer or Web User Interface to view and update 
your IPIC connections. If you do not specify AUTOCONNECT(YES) for one of the 
IPCONN resources, you must acquire the connection by updating the status of the 
resource. 

Migrating APPC and MRO connections to IPIC 
You can migrate your existing MRO, APPC, and LUTYPE6.1 connections to IPIC 
connections. Existing connections continue to operate as before. 

DEFINE 
  TCPIPSERVICE(TSB)               name of the TCPIPSERVICE to receive 
                                  inbound requests (same as that 
                                  specified on the IPCONN definition) 
  GROUP(groupname)                groupname of related definitions 
  HOST(hostb.example.com)         IP address we will listen at 
  PORTNUMBER(32022)               port number we will listen on 
  PROTOCOL(IPIC)                  must be IPIC for IP interconnectivity links 
  SOCKETCLOSE(NO)                 must be NO for IP interconnectivity links 
  TRANSACTION(CISS)               transaction to process new requests 
  URM(NO)                         IPCONN autoinstall user program 
 
Figure 43. Example TCPIPSERVICE definition for an IPIC connection

 

152 CICS TS for z/OS 4.1: Intercommunication Guide



Before you begin 

If you want to migrate APPC or MRO connections to IPIC, you must have installed 
support for IPIC. The CICS Transaction Server for z/OS Installation Guide describes 
how to do this. 

About this task 

To migrate your existing connections to IPIC, use the topic, “The DFH0IPCC 
migration utility” on page 156. 

Procedure 
 1.   Create a TCPIPSERVICE resource definition in each of the interconnected 

regions. 
a.   Specify PROTOCOL(IPIC). 
b.   Specify TCPIPSERVICE(DFHIPIC) or TCPIPSERVICE(servicename). If you 

specify a user-defined name, use this same name for all the 
TCPIPSERVICE definitions that you create. 

c.   Specify other options, such as PORTNUMBER, according to the 
requirements of the region where the TCPIPSERVICE definition is to be 
installed.

The number of definitions you require depends on, for example, the number 
of unique port numbers you must specify. 

 2.   Put each TCPIPSERVICE definition in a resource definition group of its own. 
 3.   Add one or more resource groups to each CICS system definition file (CSD) 

used by the interconnected regions, the number depending on the number of 
CICS regions the CSD serves and the number of unique TCPIPSERVICE 
definitions that they require. 

 4.   Install one TCPIPSERVICE, named DFHIPIC, or user-defined service name, in 
each of the interconnected regions. 

 5.   Complete an APPLID table for the interconnected CICS regions, as shown in 
Example 1 below. 
a.   Create the table as a fixed-block, 80-byte record format. 
b.   You can use any method to fill the table; manually, for example, or by a 

utility, such as a spreadsheet or script, but you must preserve the 
fixed-length format. You can remove or omit any of the provided 
comments or header lines. 

c.   The table must contain the application identifiers (APPLIDs), network IDs, 
where applicable, TCP/IP port numbers, and host names of all the 
interconnected CICS regions. 

d.   If the previously defined TCPIPSERVICE definitions were named anything 
other than DFHIPIC, the table must contain a .DEFAULT record with 
TCPIPSERVICE=servicename in the HOST column.

 6.   Copy your APPLID table to every system that contains a CSD used by the 
interconnected regions. 

 7.   Create JCL that can be used to invoke DFH0IPCC through DFHCSDUP, like 
that shown in Example 2 below. Specify the lists and resource groups that you 
want DFH0IPCC to search for information about CONNECTION and 
SESSIONS definitions. The JCL issues a DFHCSDUP EXTRACT command, passing 
the utility program as the USERPROGRAM. 

 8.   On one of the CSD-owning systems, use your customized JCL file to invoke 
the DFH0IPCC utility program. The utility program collects information about 

 

Chapter 13. How to define connections to remote systems 153



CONNECTION and SESSIONS definitions, creates IPCONN definitions, and 
writes a series of DEFINE statements, which form the SYSIN for your 
resulting DFHCSDUP invocation JCL. 

 9.   Review the output produced by the utility program. 
a.   Check that the IPCONN definitions are correct for your installation. You 

might want to modify the default SSL settings to add greater security 
controls for a particular connection. 

b.   Modify the USER, PASSWORD, and library names in the generated JCL, to 
match those used by your location.

10.   Run the generated JCL to add the new IPCONN resources to your CSD file. 
11.   Repeat steps 8, 9, and 10 for each CSD file used by the interconnected CICS 

regions.

Example 

This example of an APPLID table shows the format that you must use. The table 
following the example has reference information for the table format. 
 

 

154 CICS TS for z/OS 4.1: Intercommunication Guide



Table 6. Format of APPLID table 

Table column Length Description 

APPLID char 8 Unique identifier or 
.DEFAULT. Use .DEFAULT to 
specify default values for 
NETID or TCPIPSERVICE. 
The leading dot prevents the 
word DEFAULT being used 
as a valid APPLID. Only one 
.DEFAULT row is allowed in 
the table. 

Separator char 1 Any alphanumeric character. 

******************************************************************************** 
*                                                                              * 
* Description:                                                                 * 
*     This Applid Table is for DFH0IPCC. This table must contain the           * 
*     APPLIDs, NETWORKIDs (where applicable for foreign network connectivity), * 
*     PORT numbers, and TCP/IP HOST names for all CICS regions in the systems  * 
*     for which IPCONN definitions are to be created.                          * 
*                                                                              * 
* File Format:                                                                 * 
*     This file must be in FB80 format, and relies on a tabular layout shown   * 
*     below. Any characters can be used as separators. Add comments using an   * 
*     asterisk in the first column of the line. A HOST name that is too long   * 
*     to fit into the table can be continued by placing an asterisk in column  * 
*     80, and continuing on column 25 of the next row (the first column of the * 
*     space for HOST). The APPLID field of any continuation record(s) must be  * 
*     left blank.                                                              * 
*                                                                              * 
* Notes:                                                                       * 
*     The optional .DEFAULT record (shown below) can be used to provide either * 
*     one or both of the following parameters:                                 * 
*     > A TCPIPSERVICE name, which must be provided immediately after          * 
*       ’TCPIPSERVICE=’ in the HOST column. If a name is not provided, it      * 
*       defaults to ’DFHIPIC’. In either case, this value is the name that must* 
*       be used when defining the TCPIPSERVICEs for the CICS systems referred  * 
*       to in this table.                                                      * 
*     > A default NETWORKID, which must be provided in the NET-ID column.      * 
*       Its omission results in the omission of the NETWORKID parameter in     * 
*       the generated IPCONN definition statements for those APPLIDs that had  * 
*       a blank NET-ID column.                                                 * 
*                                                                              * 
*     Examples of various valid table entries are shown following the .DEFAULT * 
*     record. These are examples only. Ensure that all rows adhere to your     * 
*     site’s standards and conventions.                                        * 
*                                                                              * 
*     Important! When editing this file, ensure that the CAPS setting is OFF.  * 
*     Otherwise, the case-sensitive HOST names might be destroyed.             * 
*                                                                              * 
******************************************************************************** 
* 
******************************************************************************** 
APPLID. |NET-ID. |PORT.|HOST. 
******************************************************************************** 
.DEFAULT|LOCALNET|     |TCPIPSERVICE=TCPSERV1 
APPL1A  |        |9876 |my.local.hostname 
OTHERCIC|OTHERNET|12345|this.host.has.a.very.long.name.which.is.going.to.requir* 
        |        |     |e.a.continuation.record 
* Comments such as this are entirely free-form other than the * in column 1 
CICSXYZ |        |9875 |10.2.156.221 
 
Figure 44. Example 1: APPLID table

 

Chapter 13. How to define connections to remote systems 155



Table 6. Format of APPLID table (continued) 

Table column Length Description 

NETID char 8 Network identifier. When left 
blank, the default NETID 
specified by the .DEFAULT 
row is used. 

Separator char 1 Any alphanumeric character. 

PORT char 5 Listening port number 

Separator char 1 Any alphanumeric character 

HOST char 55 TCP/IP host name 

Continuation column char 1 Normally blank. Any 
nonblank character in this 
field indicates that the host 
name is longer than 55 
characters and continues in 
the HOST column in the 
following row.

  

You can use this example JCL to invoke DFH0IPCC through DFHCSDUP. 
   

The DFH0IPCC migration utility 
The DFH0IPCC utility program that is provided with CICS converts existing APPC 
and MRO connections to IPIC connections (IPCONNs). DFH0IPCC is a sample 
program for use with the DFHCSDUP system definition utility program. The 
utility generates a set of statements that form the input to DFHCSDUP. 

The DFH0IPCC program takes input supplied in a table that you can edit, called 
an APPLID table. This table is used to store the APPLIDs of all the regions in the 

//IPCJOB   JOB user,CLASS=A,USER=user,PASSWORD=pass 
/*ROUTE PRINT user 
//CSDUPJOB EXEC PGM=DFHCSDUP,REGION=0M 
//STEPLIB  DD DSN=loadlibrary,DISP=SHR 
//         DD DSN=loadlibrary,DISP=SHR 
//DFHCSD   DD DSN=csdfilename,DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//CSDCOPY  DD UNIT=VIO 
//APPLTABL DD DSN=applidtablename, 
//            DISP=SHR,UNIT=SYSDA,SPACE=(CYL,(2,1)), 
//            DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80) 
//LOGFILE     DD DSN=logfilename, 
//            DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,SPACE=(CYL,(2,1)), 
//            DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80) 
//OUTFILE  DD DSN=outputfilename, 
//            DISP=(MOD,CATLG,DELETE),UNIT=SYSDA,SPACE=(CYL,(2,1)), 
//            DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80) 
//SYSUDUMP DD SYSOUT=A 
//SYSABEND DD SYSOUT=A 
//SYSIN    DD * 
EXTRACT GR(group1) USERPROGRAM(DFH0IPCC) OBJECTS 
EXTRACT GR(group2) USERPROGRAM(DFH0IPCC) OBJECTS 
EXTRACT GR(list1) USERPROGRAM(DFH0IPCC) OBJECTS 
EXTRACT GR(list2) USERPROGRAM(DFH0IPCC) OBJECTS 
/* 
// 
 
Figure 45. Example 2: JCL to invoke DFH0IPCC through DFHCSDUP

 

156 CICS TS for z/OS 4.1: Intercommunication Guide



relevant setup, with the corresponding HOST name of the region and the listening 
PORT of the TCPIPSERVICE definition used to deal with inbound TCP/IP 
connections. 

The DFH0IPCC program examines lists and resource groups in the CSD for CICS 
regions, collecting information about the CONNECTION and SESSIONS definitions 
it finds. For each APPC or MRO pair of CONNECTION and SESSIONS definitions, 
it creates an IPCONN definition. Where appropriate, the attributes of the IPCONN 
definition are taken from the CONNECTION and SESSIONS definitions, with the 
values of the remaining attributes taken from the APPLID table or allowed to take 
their default values. When the utility program has completed an IPCONN 
definition, it writes a series of DEFINE statements, which form the SYSIN for your 
resulting DFHCSDUP invocation JCL. 

IPCONN attribute mapping 

This table summarizes how the DFH0IPCC utility program maps the 
CONNECTION attributes to the IPCONN definition. 

 Table 7. IPCONN attribute mapping 

IPCONN 
definition 
attribute Migrated From or Created By Comments 

APPLID CONNECTION (NETNAME) Direct migration 

AUTOCONNECT CONNECTION 
(AUTOCONNECT) 

Direct migration. But, if ALL, set 
the new value to YES. 

CERTIFICATE N/A Blank 

CIPHERS N/A Blank 

DESCRIPTION N/A Blank. Not migrated. You can add 
this in the DFH0IPCC output. 

GROUP CONNECTION (GROUP) 
SESSIONS (GROUP) 

Not changed 

HOST APPLID table Must be specified in the APPLID 
table. 

INSERVICE CONNECTION (INSERVICE) Direct migration 

IPCONN CONNECTION (CONNECTION) Direct migration. See “IPCONN 
names” on page 158. 

MAXQTIME CONNECTION (MAXQTIME) Direct migration 

NETWORKID APPLID table No equivalent. Leave blank if not 
specified in the APPLID table or if 
using the default. 

PORT APPLID table Must be specified in the APPLID 
table. 

QUEUELIMIT CONNECTION (QUEUELIMIT) Direct migration 

RECEIVECOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO 
SESSIONS equivalent setting, or 
derived from the APPC SESSIONS 
MAXIMUM setting. 

SENDCOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO 
SESSIONS equivalent setting, or 
derived from the APPC SESSIONS 
MAXIMUM setting. 

 

Chapter 13. How to define connections to remote systems 157



Table 7. IPCONN attribute mapping (continued) 

IPCONN 
definition 
attribute Migrated From or Created By Comments 

SSL N/A Left blank. You can modify this in 
the DFH0IPCC output. 

TCPIPSERVICE APPLID table Always “DFHIPIC” or as in the 
APPLID table. See 
“TCPIPSERVICE names.” 

XLNACTION CONNECTION (XLNACTION) Direct migration
  

IPCONN names 

The IPCONN names are generated to avoid duplicates. The DFH0IPCC utility 
program uses the name of the CONNECTION definition because there is a 
one-to-one relationship between a CONNECTION definition and the IPCONN 
definition created from it. The coexistence of same-name CONNECTION and 
IPCONN definitions is fully supported by CICS provided that the CONNECTION 
NETNAME and IPCONN APPLID are the same. In this instance, CICS selects the 
IPCONN definition instead of the CONNECTION definition for routing of 
supported function. 

TCPIPSERVICE names 

Because an IPCONN definition cannot determine the TCPIPSERVICE name of a 
partner region, the utility cannot produce TCPIPSERVICE definitions; you must 
define them manually. The utility works in such a way that all TCPIPSERVICE 
names in regions for which the utility produces IPCONN definitions must be the 
same. 

All IPCONN definitions created by the DFH0IPCC utility program have the default 
attribute, TCPIPSERVICE (DFHIPIC), unless you supply a different name using the 
.DEFAULT row in the APPLID file. If you specify another name, use that name for 
all TCPIPSERVICE definitions that you create. 

Equivalent attributes on IPCONN definitions 
If you want to migrate your APPC and MRO connections manually, instead of 
running the DFH0IPCC migration utility, these tables show the attributes of 
CONNECTION and SESSION resource definitions for MRO and APPC connections 
and the equivalent attributes on IPCONN definitions. 

APPC connections

 Table 8. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents 

CONNECTION options APPC possible values IPCONN equivalent value 

ACCESSMETHOD VTAM Not applicable 

ATTACHSEC LOCAL | IDENTIFY | VERIFY | 
PERSISTENT | MIXIDPE 

USERAUTH LOCAL | IDENTIFY | 
VERIFY | NO | CERTIFICATE 

AUTOCONNECT NO | YES | ALL NO | YES 

BINDSECURITY NO | YES SSL NO | YES 

DATASTREAM USER Not applicable 

 

158 CICS TS for z/OS 4.1: Intercommunication Guide



Table 8. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents (continued) 

CONNECTION options APPC possible values IPCONN equivalent value 

INDSYS Not applicable (indirect connections 
only) 

Not applicable (indirect connections 
only) 

INSERVICE YES | NO As is 

MAXQTIME NO | 0 - 9999 As is 

NETNAME The VTAM APPLID of the remote 
region. (For XRF, the generic applid. 
For connections to a VTAM generic 
resource, either the applid or generic 
resource name.) 

Combination of APPLID and 
NETWORKID 

PROTOCOL APPC Not applicable 

PSRECOVERY SYSDEFAULT | NONE Not applicable 

QUEUELIMIT NO | 0 - 9999 As is 

RECORDFORMAT U Not applicable 

REMOTENAME Name (sysid) by which the remote 
system is known to itself 

Not applicable 

REMOTESYSNET Applid of the remote system that 
owns the remote resource, if the link 
to the remote system is indirect 

Not applicable 

REMOTESYSTEM Name (sysid) of the remote system, 
or sysid of the next system in the 
path, if the link to the remote system 
is indirect 

Not applicable 

SECURITYNAME RACF ID of the remote system As is 

SINGLESESS NO | YES Not applicable 

USEDFLTUSER NO | YES Not applicable 

XLNACTION KEEP | FORCE As is
  

 Table 9. Migrating APPC connections to IPIC. SESSIONS options and their IPCONN equivalents 

SESSIONS options APPC possible values IPCONN equivalent value 

AUTOCONNECT NO | YES | ALL Not applicable 

BUILDCHAIN YES Not applicable 

CONNECTION Name of CONNECTION to which 
this SESSION definition applies to 

Not applicable 

DISCREQ Not applicable Not applicable 

IOAREALEN Not applicable Not applicable 

MAXIMUM 1 - 999, 0 - 999 SENDCOUNT & RECEIVECOUNT 

MODENAME Name of a VTAM LOGMODE Not applicable 

NEPCLASS Transaction class for the node error 
program 

Not applicable 

NETNAMEQ Not applicable Not applicable 

PROTOCOL APPC Not applicable 

RECEIVECOUNT Not applicable Derived from MAXIMUM 

RECEIVEPFX Not applicable Not applicable 

RECEIVESIZE RU size to receive: 1 - 30720 Not applicable 

 

Chapter 13. How to define connections to remote systems 159



Table 9. Migrating APPC connections to IPIC. SESSIONS options and their IPCONN equivalents (continued) 

SESSIONS options APPC possible values IPCONN equivalent value 

RECOVOPTION SYSDEFAULT | CLEARCONV | 
RELEASESESS | UNCONDREL | 
NONE 

Not applicable 

RELREQ NO | YES Not applicable 

SENDCOUNT Not applicable Derived from MAXIMUM 

SENDPFX Not applicable Not applicable 

SENDSIZE RU size to send: 1 - 30720 Not applicable 

SESSNAME Not applicable Not applicable 

SESSPRIORITY 0 - 255 Not applicable 

USERAREALEN Length of TCTTE user area: 0 - 255 Not applicable 

USERID ID for sign on Not applicable
  

MRO connections 

MRO connections are all CICS-to-CICS connections between regions in the same 
sysplex. For this type of connection, MRO might be more useful than IPIC because 
it supports all the base CICS intercommunication functions, whereas IPIC supports 
a subset. 

 Table 10. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents 

CONNECTION options MRO possible values IPCONN equivalent value 

ACCESSMETHOD IRC | XM Not applicable 

ATTACHSEC LOCAL | IDENTIFY USERAUTH LOCAL | IDENTIFY | 
VERIFY | NO | CERTIFICATE 

AUTOCONNECT Not applicable NO | YES 

BINDSECURITY Not applicable SSL NO | YES 

DATASTREAM USER Not applicable 

INDSYS Not applicable (indirect connections 
only) 

Not applicable (indirect connections 
only) 

INSERVICE YES | NO As is 

MAXQTIME NO | 0 - 9999 As is 

NETNAME The APPLID specified in the SIT of 
the remote region 

host.domain.country[:port] 

PROTOCOL Blank Not applicable 

PSRECOVERY Not applicable Not applicable 

QUEUELIMIT NO | 0 - 9999 As is 

RECORDFORMAT U Not applicable 

REMOTENAME Not applicable Not applicable 

REMOTESYSNET Not applicable Not applicable 

REMOTESYSTEM Not applicable Not applicable 

SECURITYNAME Not applicable As is 

SINGLESESS Not applicable Not applicable 

USEDFLTUSER NO | YES Not applicable 

 

160 CICS TS for z/OS 4.1: Intercommunication Guide



Table 10. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents (continued) 

CONNECTION options MRO possible values IPCONN equivalent value 

XLNACTION KEEP | FORCE As is
  

 Table 11. Migrating MRO connections to IPIC. SESSIONS options and their IPCONN equivalents 

SESSIONS options MRO possible values IPCONN equivalent value 

AUTOCONNECT Not applicable Not applicable 

BUILDCHAIN Not applicable Not applicable 

CONNECTION Name of CONNECTION to which 
this SESSION definition applies 

Not applicable 

DISCREQ Not applicable Not applicable 

IOAREALEN Default TIOA size: 0 - 32767 , 0 - 
32767 

Not applicable 

MAXIMUM Not applicable Not applicable 

MODENAME Not applicable Not applicable 

NEPCLASS Transaction class for the node error 
program 

Not applicable 

NETNAMEQ Not applicable Not applicable 

PROTOCOL LU61 Not applicable 

RECEIVECOUNT Number of receive sessions: 1 - 999 As is 

RECEIVEPFX Termid prefix Not applicable 

RECEIVESIZE Not applicable Not applicable 

RECOVOPTION Not applicable Not applicable 

RELREQ Not applicable Not applicable 

SENDCOUNT Number of send sessions: 1 - 999 As is 

SENDPFX Termid prefix Not applicable 

SENDSIZE Not applicable Not applicable 

SESSNAME Not applicable Not applicable 

SESSPRIORITY 0 - 255 Not applicable 

USERAREALEN Length of TCTTE user area: 0 - 255 Not applicable 

USERID ID to sign in Not applicable
  

Defining links for multiregion operation 
This section describes how to define an interregion communication connection 
between the local CICS system and another CICS region in the same operating 
system. 

Note:  The external CICS interface (EXCI) uses a specialized form of MRO link, 
that is described on page “Defining links for use by the external CICS interface” on 
page 165. This present section describes MRO links between CICS systems. 
However, most of its contents apply also to EXCI links, except where noted 
otherwise on page “Defining links for use by the external CICS interface” on page 
165.

 

Chapter 13. How to define connections to remote systems 161



From the point of view of the local CICS system, each session on the link is 
characterized as either a SEND session or a RECEIVE session. SEND sessions are 
used to carry an initial request from the local to the remote system and to carry 
any subsequent data flows associated with the initial request. Similarly, RECEIVE 
sessions are used to receive initial requests from the remote system. 

Defining an MRO link 
You define the connection and the associated group of sessions separately. The 
two definitions are individual “objects” on the CICS system definition file (CSD), 
and they are not associated with each other until the group is installed. 

About this task 

The following rules apply for MRO links: 
v   The CONNECTION and SESSIONS must be in the same GROUP. 
v   The SESSIONS must have PROTOCOL(LU61), but the PROTOCOL option of 

CONNECTION must be left blank. 
v   The CONNECTION option of SESSIONS must match the sysidnt specified for 

the CONNECTION. 
v   Only one SESSIONS definition can be related to an MRO CONNECTION. 
v   There can be only one MRO link between any two CICS regions; that is, each 

DEFINE CONNECTION must specify a unique netname.

As explained earlier in this chapter, the sysidnt is the local name for the CICS 
system to which the link is being defined. The netname must be the name with 
which the remote system logs on to the interregion SVC; that is, its applid. If you 
do not specify a netname, then sysidnt must satisfy these requirements. 

Note: For reasons of clarity and conciseness, inapplicable and inessential options 
have been omitted from Figure 46 on page 163, and from all the example 
definitions in this chapter, and no attempt has been made to mimic the layout of 
the CEDA DEFINE panels. For details of all RDO options, refer to the the CICS 
Resource Definition Guide. 
 

 

162 CICS TS for z/OS 4.1: Intercommunication Guide



On the CONNECTION definition, the QUEUELIMIT option specifies the maximum 
number of requests permitted to queue for free sessions to the remote system. The 
MAXQTIME option specifies the maximum time between a queue becoming full 
and it being purged because the remote system is unresponsive. Further 
information is given in Chapter 24, “Intersystem session queue management,” on 
page 279. 

For information about the ATTACHSEC and USEDFLTUSER security options see 
Specifying user security in link definitions, in the CICS RACF Security Guide. 

On the SESSIONS definition, you must specify the number of SEND and RECEIVE 
sessions that are required (at least one of each). Initial requests can never be sent 
on a RECEIVE session. Bear this in mind when deciding how many SEND and 
RECEIVE sessions you need. 

You can also specify the prefixes which allow the sessions to be named. A prefix is 
a one-character or two-character string that is used to generate session identifiers 
(TRMIDNTs). If you do not specify prefixes, they default to '>' (for SEND) and '<' 
(for RECEIVE). It is recommended that you allow the prefixes to default, because: 
v   This guarantees that the session names generated by CICS are unique—prefixes 

must not cause a conflict with an existing connection or terminal name. 
v   If you specify your own 2-character prefixes, the number of sessions you can 

define for each connection is limited to 99. If you specify your own 1-character 
prefixes, the limit increases to 999—the same as for default prefixes—but you 
may find it harder to guarantee unique session names.

For an explanation of how CICS generates names for MRO sessions, see SESSIONS 
definition attributes, in the CICS Resource Definition Guide. 

Choosing the access method for MRO 
You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for 
an MRO link. Cross-memory services are used only if the other end of the link also 
specifies cross-memory. 

  
DEFINE 
  CONNECTION(sysidnt) 
  GROUP(groupname) 
  NETNAME(name) 
  ACCESSMETHOD(IRC|XM) 
  QUEUELIMIT(NO|0-9999) 
  MAXQTIME(NO|0-9999) 
  INSERVICE(YES) 
  ATTACHSEC(LOCAL|IDENTIFY) 
  USEDFLTUSER(NO|YES) 
DEFINE 
  SESSIONS(csdname) 
  GROUP(groupname) 
  CONNECTION(sysidnt) 
  PROTOCOL(LU61) 
  RECEIVEPFX(prefix1) 
  RECEIVECOUNT(number1) 
  SENDPFX(prefix2) 
  SENDCOUNT(number2) 
  SESSPRIORITY(number) 
  IOAREALEN(value) 
 
Figure 46. Defining an MRO link

 

Chapter 13. How to define connections to remote systems 163



When you specify ACCESSMETHOD(XM) in a connection definition, a region 
containing this definition uses one of the 512 available MRO XM logons for the 
LPAR. A region can contain both ACCESSMETHOD(XM) and 
ACCESSMETHOD(IRC) connections, but if the region contains one or more XM 
connections then the region uses an MRO XM logon. 

To select the CICS Type 3 SVC for interregion communication, use 
ACCESSMETHOD(IRC). 

The use of MVS cross-memory services reduces the number of instructions 
necessary to transmit messages between regions. Also, less virtual storage is 
required in the MVS common service area. However, cross-memory services can be 
less attractive from the security point of view (see Security implications of choice 
of MRO access method , in the CICS RACF Security Guide). 

Cross-memory services also require CICS address spaces to be nonswappable. For 
low-activity systems that would otherwise be eligible for address space swapping, 
you might prefer to accept the greater path length of the CICS interregion SVC 
rather than the greater real storage requirements of nonswappable address spaces. 

Note: If you are using cross-system multiregion operation (XCF/MRO), CICS 
selects the XCF access method dynamically—overriding the CONNECTION 
definition, which can specify either XM or IRC. 

Figure 47 shows a typical definition for an MRO link. 
   

Defining compatible MRO nodes 
An MRO link must be defined in both of the systems that it connects. You must 
ensure that the two definitions are compatible with each other. For example, if one 
definition specifies six sending sessions, the other definition requires six receiving 
sessions. 

About this task 

The compatibility requirements are shown in Figure 48 on page 165. 
 

DEFINE 
  CONNECTION(CICB)     local name for remote system 
  GROUP(groupname)     groupname of related definitions 
  NETNAME(CICSB)       applid of remote system 
  ACCESSMETHOD(XM)     cross-memory services 
  QUEUELIMIT(NO)       if no free sessions, queue all requests 
  INSERVICE(YES) 
  ATTACHSEC(LOCAL)     use security of the link only 
  USEDFLTUSER(NO) 
DEFINE 
  SESSIONS(csdname)    unique csd name 
  GROUP(groupname)     same group as the connection 
  CONNECTION(CICB)     related connection 
  PROTOCOL(LU61) 
  RECEIVEPFX(<) 
  RECEIVECOUNT(5)      5 receive sessions 
  SENDPFX(>) 
  SENDCOUNT(3)         3 send sessions 
  SESSPRIORITY(100) 
  IOAREALEN(300)       minimum TIOA size for sessions 
 
Figure 47. Example of MRO link definition

 

164 CICS TS for z/OS 4.1: Intercommunication Guide



In Figure 48, related options are shown by identical numbers. 

Defining links for use by the external CICS interface 
This section describes how to define connections for use by non-CICS programs 
using the external CICS interface (EXCI) to link to CICS server programs. The 
definitions required are similar to those needed for MRO links between CICS 
systems. Each connection requires a CONNECTION and a SESSIONS definition. 

Because EXCI connections are used for processing work from external sources, you 
must not define any SEND sessions. 

EXCI connections can be defined as “specific” or “generic”. A specific EXCI 
connection is an MRO link on which all the RECEIVE sessions are dedicated to a 
single user (client program). A generic EXCI connection is an MRO link on which 
the RECEIVE sessions are shared by multiple users. Only one generic EXCI 
connection can be defined on each CICS region. 

On definitions of both specific and generic connections, you must: 
v   Specify PROTOCOL(EXCI). 
v   Specify ACCESSMETHOD(IRC). The external CICS interface does not support 

the MRO cross-memory access method (XM). The cross-system coupling facility 
(XCF) is supported. 

v   Let SENDCOUNT and SENDPFX default to blanks.

Figure 49 on page 166 shows the definition of a specific EXCI connection. 
 

       CICSA                                  CICSB 
  
DFHSIT  TYPE=CSECT                          DFHSIT  TYPE=CSECT 
       ,APPLID=CICSA       1            4          ,APPLID=CICSB 
  
DEFINE CONNECTION(CICB)    2            8   DEFINE CONNECTION(CICA) 
    GROUP(PRODSYS)         3            9       GROUP(TESTSYS) 
    NETNAME(CICSB)         4            1       NETNAME(CICSA) 
    ACCESSMETHOD(IRC)                           ACCESSMEHOD(IRC) 
    QUEUELIMIT(500)                             QUEUELIMIT(NO) 
    MAXQTIME(500) 
    INSERVICE(YES)                              INSERVICE(YES) 
                                                ATTACHSEC(LOCAL) 
  
DEFINE SESSIONS(SESS01)                     DEFINE SESSIONS(SESS02) 
    GROUP(PRODSYS)         3            9       GROUP(TESTSYS) 
    CONNECTION(CICB)       2            8       CONNECTION(CICA) 
    PROTOCOL(LU61)         5            5       PROTOCOL(LU61) 
    RECEIVEPFX(<)                               RECEIVEPFX(<) 
    RECEIVECOUNT(8)        6            7       RECEIVECOUNT(10) 
    SENDPFX(>)                                  SENDPFX(>) 
    SENDCOUNT(10)          7            6       SENDCOUNT(8) 
 
Figure 48. Defining compatible MRO nodes

 

Chapter 13. How to define connections to remote systems 165



For a specific connection, NETNAME must be coded with the name of the user 
program that will be passed on the EXCI INITIALIZE_USER command. 
CONNTYPE must be Specific. 

Figure 50 shows the definition of a generic EXCI connection. 
 

For a generic connection, NETNAME must be blank. CONNTYPE must be Generic. 

Installing MRO and EXCI link definitions 
You can install new MRO and EXCI connections dynamically, while CICS is fully 
operational—there is no need to close down interregion communication (IRC) to 
do so. 

Note that CICS commits the installation of connection definitions at the group 
level—if the install of any connection or terminal fails, CICS backs out the 
installation of all connections in the group. Therefore, when adding new 
connections to a CICS region with IRC open, ensure that the new connections are 
in a group of their own. 

DEFINE 
  CONNECTION(EIP1)     local name for connection 
  GROUP(groupname)     groupname of related definitions 
  NETNAME(CLAP1)       user name on INITIALIZE_USER command 
  ACCESSMETHOD(IRC) 
  PROTOCOL(EXCI) 
  CONNTYPE(Specific)   pipes dedicated to a single user 
  INSERVICE(YES) 
  ATTACHSEC(LOCAL) 
DEFINE 
  SESSIONS(csdname)    unique csd name 
  GROUP(groupname)     same group as the connection 
  CONNECTION(EIP1)     related connection 
  PROTOCOL(EXCI)       external CICS interface 
  RECEIVEPFX(<) 
  RECEIVECOUNT(5)      5 receive sessions 
  SENDPFX              leave blank 
  SENDCOUNT            leave blank 
 
Figure 49. Example definition for a specific EXCI connection. For use by a non-CICS client 
program using the external CICS interface.

DEFINE 
  CONNECTION(EIP2)     local name for connection 
  GROUP(groupname)     groupname of related definitions 
  ACCESSMETHOD(IRC) 
  NETNAME()            must be blank for generic connection 
  INSERVICE(YES) 
  PROTOCOL(EXCI) 
  CONNTYPE(Generic)    pipes shared by multiple users 
  ATTACHSEC(LOCAL) 
DEFINE 
  SESSIONS(csdname)    unique csd name 
  GROUP(groupname)     same group as the connection 
  CONNECTION(EIP2)     related connection 
  PROTOCOL(EXCI)       external CICS interface 
  RECEIVEPFX(<) 
  RECEIVECOUNT(5)      5 receive sessions 
  SENDPFX              leave blank 
  SENDCOUNT            leave blank 
 
Figure 50. Example definition for a generic EXCI connection. For use by non-CICS client 
programs using the external CICS interface.

 

166 CICS TS for z/OS 4.1: Intercommunication Guide



You cannot modify existing MRO (or EXCI) links while IRC is open. You should 
therefore ensure, when defining an MRO link, that you specify enough SEND and 
RECEIVE sessions to cater for the expected workload. 

For further information about installing MRO links, see CONNECTION definition 
attributes, in the CICS Resource Definition Guide. 

Defining APPC connections 
An APPC connection consists of one or more sets of sessions. The sessions in each 
set have identical characteristics, apart from being either contention winners or 
contention losers. 

Each set of sessions can be assigned a modename that enables it to be mapped to a 
VTAM logmode name and from there to a class of service (COS). A set of APPC 
sessions is therefore referred to as a modeset. 

An APPC terminal is often an APPC system that supports only a single session 
and which does not support an LU services manager. There are several ways of 
defining such terminals; further details are given under “Defining single-session 
APPC terminals” on page 171. This section describes the definition of one or more 
modesets containing more than one session. 

To define an APPC connection to a remote system, you must: 
1.   Use DEFINE CONNECTION to define the remote system. 
2.   Use DEFINE SESSIONS to define each set of sessions to the remote system.

However, you must not have more than one APPC connection installed at the 
same time between an LU-LU pair. Nor should you have an APPC and an 
LUTYPE6.1 connection installed at the same time between an LU-LU pair. 

For all APPC connections, except single-session connections to APPC terminals, 
CICS automatically builds a set of special sessions for the exclusive use of the LU 
services manager, using the modename SNASVCMG. This is a reserved name, and 
cannot be used for any of the sets that you define. 

If you are defining a VTAM logon mode table, remember to include an entry for 
the SNASVCMG sessions. (See ACF/VTAM LOGMODE table entries for CICS.) 

 

Chapter 13. How to define connections to remote systems 167



Defining the remote APPC system 
This is the form of definition for an APPC system. 

 

 You must specify ACCESSMETHOD(VTAM) and PROTOCOL(APPC) to define an 
APPC system. The CONNECTION name (that is, the sysidnt) and the netname 
have the meanings explained in “Identifying remote systems” on page 150 (but see 
the box that follows). 

Important:  

If you are defining an APPC link to a terminal-owning region that is a member of 
a VTAM generic resource group, NETNAME can specify either the TOR's generic 
resource name, or its applid. (See the note about VTAM generic resource names in 
“Generic and specific applids for XRF” on page 187.) For advice on coding 
NETNAME for connections to a generic resource, see Chapter 12, “Configuring 
VTAM generic resources,” on page 121. 

Because this connection will have multiple sessions, you must specify 
SINGLESESS(N), or allow it to default. (The definition of single-session APPC 
terminals is described in “Defining single-session APPC terminals” on page 171.) 

The AUTOCONNECT option specifies which of the sessions associated with the 
connection are to be bound when CICS is initialized. Further information is given 
in “The AUTOCONNECT option” on page 173. 

The QUEUELIMIT option specifies the maximum number of requests permitted to 
queue for free sessions to the remote system. The MAXQTIME option specifies the 
maximum time between a queue becoming full and it being purged because the 
remote system is unresponsive. Further information is given in Chapter 24, 
“Intersystem session queue management,” on page 279. 

If you are using VTAM persistent session support, the PSRECOVERY option 
specifies whether sessions to the remote system are recovered, if the local CICS 
fails and restarts within the persistent session delay interval. Further information is 
given in “Using VTAM persistent sessions on APPC links” on page 174. 

For information about security options, see Implementing LU6.2 security, in the 
CICS RACF Security Guide. 

DEFINE 
  CONNECTION(name) 
  GROUP(groupname) 
  NETNAME(name) 
  ACCESSMETHOD(VTAM) 
  PROTOCOL(APPC) 
  SINGLESESS(NO) 
  QUEUELIMIT(NO|0-9999) 
  MAXQTIME(NO|0-9999) 
  AUTOCONNECT(NO|YES|ALL) 
  SECURITYNAME(value) 
  ATTACHSEC(LOCAL|IDENTIFY|VERIFY|PERSISTENT|MIXIDPE) 
  BINDPASSWORD(password) 
  BINDSECURITY(YES|NO) 
  USEDFLTUSER(NO|YES) 
  PSRECOVERY(SYSDEFAULT|NONE) 
 
Figure 51. Defining an APPC system

 

168 CICS TS for z/OS 4.1: Intercommunication Guide



Note: If the intersystem link is to be used by existing applications that were 
designed to run on LUTYPE6.1 links, you can use the DATASTREAM and 
RECORDFORMAT options to specify data stream information for asynchronous 
processing. The information provided by these options is not used by APPC 
application programs. 

Defining groups of APPC sessions 
Each group of sessions for an APPC system is defined by means of a DEFINE 
SESSIONS command. 

The definition is shown in Figure 52. Each individual group of sessions is referred 
to as a modeset. 
 

The CONNECTION option specifies the name (1–4 characters) of the APPC system 
for which the group is being defined; that is, the CONNECTION name in the 
associated DEFINE CONNECTION command. 

The MODENAME option enables you to specify a name (1–8 characters) to identify 
this group of related sessions. The name must be unique among the modenames 
for any one APPC intersystem link, and you must not use the reserved names 
SNASVCMG or CPSVCMG. 

The MAXIMUM(m1,m2) option specifies the maximum number of sessions that are 
to be supported for the group. The parameters of this option have the following 
meanings: 
v   m1 specifies the maximum number of sessions in the group. The default value is 

1. 
v   m2 specifies the maximum number of sessions to be supported as contention 

winners. The number specified for m2 must not be greater than the number 
specified for m1. The default value for m2 is zero.

The RECEIVESIZE option, which specifies the maximum size of request unit (RU) 
to be received, must be in the range 256 through 30 720. 

The AUTOCONNECT option specifies whether the sessions are to be bound when 
CICS is initialized. Further information is given in “The AUTOCONNECT option” 
on page 173. 

If you are using VTAM persistent session support, and CICS fails and restarts 
within the persistent session delay interval, the RECOVOPTION option specifies 

DEFINE 
   SESSIONS(csdname) 
   GROUP(groupname) 
   CONNECTION(name) 
   MODENAME(name) 
   PROTOCOL(APPC) 
   MAXIMUM(m1,m2) 
   SENDSIZE(size) 
   RECEIVESIZE(size) 
   SESSPRIORITY(number) 
   AUTOCONNECT(NO|YES|ALL) 
   USERAREALEN(value) 
   RECOVOPTION(SYSDEFAULT|UNCONDREL|NONE) 
 
Figure 52. Defining a group of APPC sessions

 

Chapter 13. How to define connections to remote systems 169



how CICS recovers the sessions. (The RECOVNOTIFY option does not apply to 
APPC sessions.) Further information is given in “Using VTAM persistent sessions 
on APPC links” on page 174. 

Defining compatible CICS APPC nodes 
When you are defining an APPC link between two CICS systems, you must ensure 
that the definitions of the link in each of the systems are compatible. 

The compatibility requirements are summarized in Figure 53. 
 

In Figure 53, related options and operands are shown by identical numbers. 

Note:  

1.   The values specified for MAXIMUM on either side of the link need not match, 
because they are negotiated by the LU services managers. However, a matching 
specification avoids unusable TCTTE entries, and also avoids unexpected 
bidding because of the “contention winners” negotiation. 

2.   If the value specified for SENDSIZE on one side of the link does not match that 
specified for RECEIVESIZE on the other, CICS negotiates the values at BIND 
time.

Automatic installation of APPC links 
You can use the CICS autoinstall facility to allow APPC links to be defined 
dynamically on their first usage, thereby saving on storage for installed definitions, 
and on time spent creating the definitions. 

Note: The method described here applies only to APPC parallel-session and 
single-session links initiated by BIND requests. The method to be used for APPC 
single-session links initiated by VTAM CINIT requests is described in “Defining 
single-session APPC terminals” on page 171. You cannot autoinstall APPC 
parallel-session links initiated by CINIT requests.

          CICSA                                     CICSB 
  
DFHSIT  TYPE=CSECT                          DFHSIT  TYPE=CSECT 
       ,APPLID=CICSA       1            3          ,APPLID=CICSB 
  
DEFINE CONNECTION(CICB)    2           10   DEFINE CONNECTION(CICA) 
    GROUP(groupname)                            GROUP(groupname) 
    NETNAME(CICSB)         3            1       NETNAME(CICSA) 
    ACCESSMETHOD(VTAM)                          ACCESSMEHOD(VTAM) 
    PROTOCOL(APPC)                              PROTOCOL(APPC) 
    SINGLESESS(N)          4            4       SINGLESESS(N) 
    QUEUELIMIT(500)                             QUEUELIMIT(NO) 
    MAXQTIME(500)                               ATTACHSEC(IDENTIFY) 
    BINDPASSWORD(pw)       5            5       BINDPASSWORD(pw) 
  
  
DEFINE SESSIONS(csdname)                     DEFINE SESSIONS(csdname) 
    GROUP(groupname)                            GROUP(groupname) 
    CONNECTION(CICB)       2           10       CONNECTION(CICA) 
    MODENAME(M1)           6            6       MODENAME(M1) 
    PROTOCOL(APPC)                              PROTOCOL(APPC) 
    MAXIMUM(ss,ww)         7            7       MAXIMUM(ss,ww) 
    SENDSIZE(kkk)          8            9       SENDSIZE(jjj) 
    RECEIVESIZE(jjj)       9            8       RECEIVESIZE(kkk) 
 
Figure 53. Defining compatible CICS APPC ISC nodes

 

170 CICS TS for z/OS 4.1: Intercommunication Guide



If autoinstall is enabled, and an APPC BIND request is received for an APPC 
service manager (SNASVCMG) session (or for the only session of a single-session 
connection), and there is no matching CICS CONNECTION definition, a new 
connection is created and installed automatically. 

Like autoinstall for terminals, autoinstall for APPC links requires model definitions. 
However, unlike the model definitions used to autoinstall terminals, those used to 
autoinstall APPC links do not need to be defined explicitly as models. Instead, 
CICS can use any previously-installed link definition as a “template” for a new 
definition. In order for autoinstall to work, you must have a template for each kind 
of link you want to be autoinstalled. 

The purpose of a template is to provide CICS with a definition that can be used for 
all connections with the same properties. You customize the supplied autoinstall 
user program, DFHZATDY, to select an appropriate template for each new link, 
based on the information it receives from VTAM. 

A template consists of a CONNECTION definition and its associated SESSIONS 
definitions. You should have a definition installed for each different set of session 
properties you are going to need. 

Any installed link definition can be used as a template but, for performance 
reasons, your template should be an installed link definition that you do not use. 
The definition is locked while CICS is copying it, and if you have a very large 
number of sessions autoinstalling, the delay may be noticeable. 

Autoinstall support is likely to be beneficial if you have large numbers of APPC 
parallel session devices with identical characteristics. For example, if you had 1000 
Personal Computers (PCs), all with the same characteristics, you would set up one 
template to autoinstall all of them. If 500 of your PCs had one set of characteristics, 
and 500 had another set, you would set up two templates to autoinstall them. 

For further information about using autoinstall with APPC links, see Autoinstalling 
APPC connections, in the CICS Resource Definition Guide. For programming 
information about the autoinstall user program, see the CICS Customization Guide. 

Defining single-session APPC terminals 
There are two methods available for defining a single-session APPC terminal: you 
can define a CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for the 
connection; or you can define a TERMINAL-TYPETERM pair. 

Defining an APPC terminal – method 1 
You can define a CONNECTION-SESSIONS pair to represent a single-session 
APPC terminal. 

About this task 

The forms of DEFINE CONNECTION and DEFINE SESSIONS commands that are 
required are similar to those shown in Figure 51 on page 168 and Figure 52 on 
page 169. The differences are shown below: 
DEFINE CONNECTION(sysidnt) 
       . 
       SINGLESESS(Y) 
       .

 

Chapter 13. How to define connections to remote systems 171



DEFINE SESSIONS(csdname) 
       . 
       MAXIMUM(1,0) 
       . 

You must specify SINGLESESS(Y) for the connection. The MAXIMUM option must 
specify only one session. The second value has no meaning for a single session 
definition as CICS always binds as a contention winner. However, CICS accepts a 
negotiated bind or a negotiated bind response in which it is changed to the 
contention loser. 

Defining an APPC terminal – method 2 
You can define a single-session APPC terminal as a TERMINAL with an associated 
TYPETERM. 

About this task 

This method of definition has two principal advantages: 
1.   You can use a single TYPETERM for all your APPC terminals of the same type. 
2.   It makes the AUTOINSTALL facility available for APPC single-session 

terminals. 
Autoinstall for APPC single sessions initiated by a VTAM CINIT works in the 
same way as autoinstall for other terminals, in that you must supply a 
TERMINAL—TYPETERM model pair. For further information about using 
autoinstall with APPC single-session terminals, see Autoinstalling APPC 
connections, in the CICS Resource Definition Guide.

The basic method for defining an APPC terminal is as follows: 
DEFINE TERMINAL(sysid) 
       MODENAME(modename) 
       TYPETERM(typeterm) 
       . 
       . 
DEFINE TYPETERM(typeterm) 
       DEVICE(APPC) 
       . 
       . 

Note that, because all APPC devices are seen as systems by CICS, the name in the 
TERMINAL option is effectively a system name. You would, for example, use 
CEMT INQUIRE CONNECTION, not CEMT INQUIRE TERMINAL, to inquire 
about an APPC terminal. 

A single, contention-winning session is implied by DEFINE TERMINAL. However, 
for APPC terminals, CICS accepts a negotiated bind in which it is changed to the 
contention loser. 

The CICS-supplied CSD group DFHTYPE contains a TYPETERM, DFHLU62T, 
suitable for APPC terminals. You can either use this TYPETERM as it stands, or 
use it as the basis for your own definition. 

If you plan to use automatic installation for your APPC terminals, you need the 
model terminal definition (LU62) that is provided in the CICS-supplied CSD group 
DFHTERM. You also have to write an autoinstall user program, and provide 
suitable VTAM LOGMODE entries. 

 

172 CICS TS for z/OS 4.1: Intercommunication Guide



For further information about TERMINAL and TYPETERM definition, the 
CICS-supplied CSD groups, and automatic installation, see the CICS Resource 
Definition Guide. For guidance about VTAM LOGMODE entries, and for 
programming information about the autoinstall user program, see the CICS 
Customization Guide. 

The AUTOCONNECT option 
You can use the AUTOCONNECT option of DEFINE CONNECTION and DEFINE 
SESSIONS (and of DEFINE TYPETERM for APPC terminals) to control CICS 
attempts to establish communication with the remote APPC system. 

Except for single-session APPC terminals (see “Defining single-session APPC 
terminals” on page 171), two events are necessary to establish sessions to a remote 
APPC system. 
1.   The connection to the remote system must be established. This means binding 

the LU services manager sessions (SNASVCMG) and carrying out initial 
negotiations. 

2.   The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT option of the DEFINE 
CONNECTION command, and in part by the AUTOCONNECT of the DEFINE 
SESSIONS command. 

The AUTOCONNECT option of DEFINE CONNECTION 
On the DEFINE CONNECTION command, the AUTOCONNECT option specifies 
whether CICS is to try to bind the LU services manager sessions at the earliest 
opportunity (when the VTAM ACB is opened). It can have the following values: 

AUTOCONNECT(NO) 
specifies that CICS is not to try to bind the LU services manager sessions. 

AUTOCONNECT(YES) 
specifies that CICS is to try to bind the LU services manager sessions. 

AUTOCONNECT(ALL) 
the same as YES; you could, however, use it as a reminder that the associated 
DEFINE SESSIONS is to specify ALL.

The LU services manager sessions cannot, of course, be bound if the remote system 
is not available. If for any reason they are not bound during CICS initialization, 
they can be bound by means of a CEMT SET CONNECTION INSERVICE 
ACQUIRED command. They are also bound if the remote system itself initiates 
communication. For a single-session APPC terminal, AUTOCONNECT(YES) or 
AUTOCONNECT(ALL) on the DEFINE CONNECTION command has no effect. 
This is because a single-session connection has no LU services manager. 

The AUTOCONNECT option of DEFINE SESSIONS 
On the DEFINE SESSIONS command, the AUTOCONNECT option specifies which 
sessions are to be bound when the associated LU services manager sessions have 
been bound. (No user sessions can be bound before this time.) 

The option can have the following values: 

AUTOCONNECT(NO) 
specifies that no sessions are to be bound. 

AUTOCONNECT(YES) 
specifies that the contention-winning sessions are to be bound. 

 

Chapter 13. How to define connections to remote systems 173



AUTOCONNECT(ALL) 
specifies that the contention-winning and the contention-losing sessions are to 
be bound.

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with 
remote systems that cannot send bind requests. By specifying 
AUTOCONNECT(ALL), you may cause CICS to bind a number of contention 
winners other than the number originally specified in this system. The number of 
contention winners that CICS binds depends on the reply that the partner system 
gives to the request to initiate sessions (CNOS exchange). CICS will try to bind as 
contention winners all sessions that are not designated as contention losers in the 
CNOS reply. For example, suppose that you define a modegroup with DEFINE 
SESSIONS MAXIMUM(10,4) on this system and DEFINE SESSIONS 
MAXIMUM(10,2) on the remote system. If the sessions are acquired from this 
system, and the contention-losing sessions bind successfully, the result is 8 primary 
contention-winning sessions. 

Attention:  Never specify AUTOCONNECT(ALL) for sessions to another CICS 
system, or to any system that may send a bind request. This could lead to 
bind-race conditions that CICS cannot resolve. 

If AUTOCONNECT(NO) is specified, the sessions can be bound and made 
available by means of a CEMT SET MODENAME ACQUIRED AVAILABLE 
command. (For details of the CEMT SET MODENAME command, see CEMT SET 
MODENAME, in the CICS Supplied Transactions manual.) If this is not done, 
sessions are bound individually according to the demands of your application 
program. 

For a single-session APPC terminal, the value specified for AUTOCONNECT on 
DEFINE SESSIONS or DEFINE TYPETERM determines whether CICS tries to bind 
the single session or not. 

Using VTAM persistent sessions on APPC links 
You can use VTAM persistent sessions to improve the availability of APPC links. 
VTAM persistent sessions support enables sessions to be recovered without the 
need for network flows in the event of a CICS or VTAM failure. 

The CICS Recovery and Restart Guide explains what happens when you use 
persistent sessions support, and why you might want to run a CICS region without 
persistent sessions support. 

If APPC sessions are active at the time of the CICS, VTAM or z/OS failure, 
persistent sessions recovery appears to APPC partners as CICS hanging. VTAM 
saves requests issued by the APPC partner, and passes them to CICS when 
recovery is complete. When CICS reestablishes a connection with VTAM, recovery 
of terminal sessions is determined by the settings for the PSRECOVERY option of 
the CONNECTION resource definition and the RECOVOPTION option of the 
SESSIONS resource definition. You must set the PSRECOVERY option of the 
CONNECTION resource definition to the default value SYSDEFAULT for sessions 
to be recovered. The alternative, NONE, means that no sessions are recovered. If 
you have selected the appropriate recovery options and the APPC sessions are in 
the correct state, CICS performs an ISSUE ABEND to inform the partner that the 
current conversation has been abnormally ended. 

 

174 CICS TS for z/OS 4.1: Intercommunication Guide



The PSRECOVERY option of DEFINE CONNECTION 
In a CICS region running with persistent session support, you use this to specify 
whether the APPC sessions used by this connection are recovered on system restart 
within the persistent session delay interval. It can have the following values: 

SYSDEFAULT 
If a failed CICS system is restarted within the persistent session delay interval, 
the following actions occur: 
v   User modegroups are recovered to the SESSIONS RECOVOPTION value. 
v   The SNASVCMG modegroup is recovered. 
v   The connection is returned in ACQUIRED state and the last negotiated 

CNOS state is returned.

NONE 
All sessions are unbound as out-of-service with no CNOS recovery.

The RECOVOPTION option of DEFINE SESSIONS and DEFINE 
TYPETERM 
In a CICS region running with persistent session support, the RECOVOPTION 
option of DEFINE SESSIONS specifies how APPC sessions are to be recovered, after 
a system restart within the persistent session delay interval. 

If you want the sessions to be persistent, you should allow the value to default to 
SYSDEFAULT. This specifies that CICS is to select the optimum procedure to 
recover a session on system restart within the persistent delay interval. 

For a single-session APPC terminal, the RECOVOPTION option of DEFINE 
SESSIONS or DEFINE TYPETERM specifies how the terminal is to be returned to 
service after a system restart within the persistent session delay interval. 

Without persistent session support, if AUTOCONNECT(YES) is specified for a 
terminal, the end-user must wait until the GMTRAN transaction has run before 
being able to continue working. If AUTOCONNECT(NO) is specified, the user has 
no way of knowing (unless told by support staff) when CICS is operational again 
unless he or she tries to log on. In either case, the user is disconnected from CICS 
and needs to reestablish his session, to regain his working environment. With 
persistent session support, the session is put into recovery pending state on a CICS 
failure. If CICS starts within the specified interval, and RECOVOPTION is set to 
SYSDEFAULT, the user does not need to reestablish his session to regain his 
working environment. 

For definitive information about the SYSDEFAULT value, and about the other 
possible values of RECOVOPTION, see SESSIONS definition attributes, in the CICS 
Resource Definition Guide. 

For further information about CICS support for persistent sessions, see Chapter 28, 
“Intercommunication and VTAM persistent sessions,” on page 319. 

Defining logical unit type 6.1 links 
You are advised to use MRO or APPC links for CICS-to-CICS communication. 

Important: 

 

Chapter 13. How to define connections to remote systems 175



LUTYPE6.1 links are necessary for intersystem communication between CICS and 
any system, such as IMS, that supports LUTYPE6.1 protocols but does not fully 
support APPC. 

You must not have an LUTYPE6.1 and an APPC connection installed at the same 
time between an LU-LU pair. 

A DEFINE CONNECTION is always required to define the remote system on an 
LUTYPE6.1 link. The sessions, however, can be defined in either of the following 
ways: 
1.   By using a single DEFINE SESSIONS command to define a pool of sessions 

with identical characteristics. 
2.   By using a separate DEFINE SESSIONS command to define each individual 

session. This method must be used to define sessions with systems, such as IMS, that 
require individual sessions to be explicitly named.

Defining CICS-to-IMS LUTYPE6.1 links 
A link to an IMS system requires a definition of the connection (or system) and a 
separate definition of each of the sessions. 

The form of definition for individual LUTYPE6.1 sessions is shown in Figure 54. 
   

Defining compatible CICS and IMS nodes 
This section describes the writing of suitable CICS definitions that are compatible 
with the corresponding IMS definitions. 

  
DEFINE 
  CONNECTION(sysidnt) 
  GROUP(groupname) 
  NETNAME(name) 
  ACCESSMETHOD(VTAM) 
  PROTOCOL(LU61) 
  DATASTREAM(USER|3270|SCS|STRFIELD|LMS) 
  RECORDFORMAT(U|VB) 
  QUEUELIMIT(NO|0-9999) 
  MAXQTIME(NO|0-9999) 
  INSERVICE(YES) 
  SECURITYNAME(name) 
  ATTACHSEC(LOCAL) 
Each individual session is then defined as follows: 
DEFINE 
  SESSIONS(csdname) 
  GROUP(groupname) 
  CONNECTION(sysidnt) 
  SESSNAME(name) 
  NETNAMEQ(name) 
  PROTOCOL(LU61) 
  RECEIVECOUNT(1|0) 
  SENDCOUNT(0|1) 
  SENDSIZE(size) 
  RECEIVESIZE(size) 
  SESSPRIORITY(number) 
  AUTOCONNECT(NO|YES|ALL) 
  BUILDCHAIN(YES) 
  IOAREALEN(value) 
 
Figure 54. Defining an LUTYPE6.1 link with individual sessions

 

176 CICS TS for z/OS 4.1: Intercommunication Guide



An overview of IMS system definition is given in Chapter 10, “Configuring 
intersystem communication,” on page 117. The relationships between CICS and 
IMS definitions are summarized in Figure 55 on page 180. 

System names 
The network name of the CICS system (its applid) is specified on the APPLID 
CICS system initialization parameter. 

This name must be specified on the NAME operand of the IMS TERMINAL macro 
that defines the CICS system. For CICS systems that use XRF, the name will be the 
CICS generic applid. For non-XRF CICS systems, the name will be the single 
applid specified on the APPLID SIT parameter (see “Generic and specific applids 
for XRF” on page 187). 

The network name of the IMS system may be specified in various ways: 
v   For systems with XRF support, as the USERVAR that is defined in the 

DFSHSBxx member of IMS.PROCLIB. 
v   For systems without XRF: 

–   on the APPLID operand of the IMS COMM macro 
–   as a label on the EXEC statement of the IMS startup job (if APPLID is coded 

as NONE) 
–   as a started task name (if APPLID is coded as NONE).

You must specify the network name of the IMS system on the NETNAME option 
of the CICS DEFINE CONNECTION command that defines the IMS system. 

Number of sessions 
In IMS, the number of parallel sessions that are required between the CICS and 
IMS system must be specified in the SESSION operand of the IMS TERMINAL 
macro. 

Each session is then represented by a SUBPOOL entry in the IMS VTAMPOOL. In 
CICS, each of these sessions is represented by an individual session definition. 

Session names 
Each CICS-to-IMS session is uniquely identified by a session-qualifier pair, which 
is formed from the CICS name for the session and the IMS name for the session. 

The CICS name for the session is specified in the SESSNAME option of the 
DEFINE SESSIONS command. For sessions that are to be initiated by IMS, this 
name must correspond to the ID parameter of the IMS OPNDST command for the 
session. For sessions initiated by CICS, the name is supplied on the CICS OPNDST 
command and is saved by IMS. 

The IMS name for the session is specified in the NAME operand of the IMS 
SUBPOOL macro. You must make the relationship between the session names 
explicit by coding this name in the NETNAMEQ option of the corresponding 
DEFINE SESSIONS command. 

The CICS and the IMS names for a session can be the same, and this approach is 
recommended for operational convenience. 

Other session parameters 
This section lists the remaining options of the DEFINE CONNECTION and 
DEFINE SESSIONS commands that are of significance for CICS-to-IMS sessions. 

 

Chapter 13. How to define connections to remote systems 177



ATTACHSEC 
Must be specified as LOCAL. 

BUILDCHAIN(YES) 
Specifies that multiple RU chains are to be assembled before being passed to 
the application program. A complete chain is passed to the application 
program in response to each RECEIVE command, and the application performs 
any required deblocking. 

 BUILDCHAIN(YES) must be specified (or allowed to default) for LUTYPE6.1 
sessions. 

DATASTREAM(USER) 
Must be specified with the value USER or allowed to default. 

 This option is used only when CICS is communicating with IMS by using the 
START command (asynchronous processing). CICS messages generated by the 
START command always cause IMS to interpret the data stream profile as 
input for component 1. 

The data stream profile for distributed transaction processing can be specified 
by the application program by means of the DATASTR option of the BUILD 
ATTACH command. 

QUEUELIMIT(NO|0-9999) 
Specifies the maximum number of requests permitted to queue for free 
sessions to the remote system. Further information is given in Chapter 24, 
“Intersystem session queue management,” on page 279. 

MAXQTIME(NO|0-9999) 
Specifies the maximum time, in seconds, between the queue for sessions to the 
remote system becoming full (that is, reaching the limit specified on 
QUEUELIMIT) and the queue being purged because the remote system is 
unresponsive. Further information is given in Chapter 24, “Intersystem session 
queue management,” on page 279. 

RECORDFORMAT(U|VB) 
Specifies the type of chaining that CICS is to use for transmissions on this 
session that are initiated by START commands (asynchronous processing). 

 Two types of data-handling algorithms are supported between CICS and IMS: 

Chained 
Messages are sent as SNA chains. The user can use private blocking 
and deblocking algorithms. This format corresponds to 
RECORDFORMAT(U). 

Variable-length variable-blocked records (VLVB) 
Messages are sent in variable-length variable-blocked format with a 
halfword length field before each record. This format corresponds to 
RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be specified 
by the application program by means of the RECFM option of the BUILD 
ATTACH command. 

Additional information on these data formats is given in Chapter 23, 
“CICS-to-IMS applications,” on page 257. 

SENDCOUNT and RECEIVECOUNT 
Used to specify whether the session is a SEND session or a RECEIVE session. 

 

178 CICS TS for z/OS 4.1: Intercommunication Guide



A SEND session is one in which the local CICS is the secondary and is the 
contention winner. Specify: 
v   SENDCOUNT(1) 

v   Allow RECEIVECOUNT to default. Do not specify RECEIVECOUNT(0).

A RECEIVE session is one in which the local CICS is the primary and is the 
contention loser. Specify: 
v   RECEIVECOUNT(1) 

v   Allow SENDCOUNT to default. Do not specify SENDCOUNT(0).

SEND sessions are recommended for all CICS-to-IMS sessions. 

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session is 
taken from the SESSNAME option. 

SENDSIZE and RECEIVESIZE 
Specify the maximum VTAM request unit (RU) sizes for these sessions. 
v   If CICS is the primary half-session, ensure that: 

1.   The CICS SENDSIZE is less than or equal to the value specified on the 
RECANY parameter of the IMS COMM macro. 

2.   The CICS RECEIVESIZE is greater than or equal to the IMS OUTBUF 
size.

v   If IMS is the primary half-session, ensure that: 
1.   The CICS SENDSIZE is greater than or equal to the IMS OUTBUF size. 
2.   The CICS RECEIVESIZE is less than or equal to the IMS RECANY size.

 

 

Chapter 13. How to define connections to remote systems 179



Figure 55 shows the relationship between the CICS and IMS definitions of an 
intersystem link. Related options and operands are shown by identical numbers. 

Note: For an example of a VTAM logmode table entry for IMS, see ACF/VTAM 
LOGMODE table entries for IMS. 

Defining multiple links to an IMS system 
You can define more than one intersystem link between a CICS and an IMS 
system. 

About this task 

This is done by creating two or more CONNECTION definitions (with their 
associated SESSION definitions), with the same netname but with different 
sysidnts (Figure 56 on page 182). Although all the system definitions resolve to the 
same netname, and therefore to the same IMS system, the use of a sysidnt name in 
CICS causes CICS to allocate a session from the link with the specified sysidnt. 

          CICS                                IMS 
  DFHSIT TYPE=CSECT                       COMM      APPLID=SYSIMS 
  
       ,SYSIDNT=CICL                    7             RECANY=nnn+22 
       ,APPLID=SYSCICS     1                          EDTNAME=ISCEDT 
  
                                        4   TYPE      UNITYPE=LUTYPE6 
  
                                        1   TERMINAL  NAME=SYSCICS 
DEFINE CONNECTION(IMSR)    2                          SESSION=2 
    GROUP(groupname)                                  COMPT1 
    NETNAME(SYSIMS)        3                          COMPT2 
    ACCESSMETHOD(VTAM)                  6             OUTBUF=mmm 
    PROTOCOL(LU61) 
    DATASTREAM(USER) 
    ATTACHSEC(LOCAL) 
  
DEFINE SESSIONS(csdname) 
    GROUP(groupname)                         VTAMPOOL 
    CONNECTION(IMSR)       2 
    SESSNAME(IMS1)                      5    SUBPOOL  NAME=CIC1 
    NETNAMEQ(CIC1)         5                 NAME     CICLT1 COMPT=1 
    PROTOCOL(LU61)         4 
    SENDCOUNT(1) 
    SENDSIZE(nnn)          7                 NAME      CICLT1A 
    RECEIVESIZE(mmm)       6 
    IOAREALEN(nnn,16364) 
  
DEFINE SESSIONS(csdname) 
    GROUP(groupname) 
    CONNECTION(IMSR)       2 
    SESSNAME(IMS2)                      8    SUBPOOL  NAME=CIC2 
    NETNAMEQ(CIC2)         8                 NAME     CICLT2 COMPT=2 
    PROTOCOL(LU61)         4 
    SENDCOUNT(1) 
    SENDSIZE(nnn)          7            3    DFSHSBxx USERVAR=SYSIMS 
    RECEIVESIZE(mmm)       6 
    IOAREALEN(nnn,16364) 
  
Note: For SEND sessions, allow RECEIVECOUNT to default. For RECEIVE 
      sessions, allow SENDCOUNT to default. 

Note: For SEND sessions, allow RECEIVECOUNT to default. For RECEIVE sessions, allow SENDCOUNT to default.
Figure 55. Defining compatible CICS and IMS nodes

 

180 CICS TS for z/OS 4.1: Intercommunication Guide



It is recommended that you define up to three links (that is, groups of sessions) 
between a CICS and an IMS system, depending upon the application requirements 
of your installation: 
1.   For CICS-initiated distributed transaction processing (synchronous processing). 

CICS applications that use the SEND/RECEIVE interface can use the sysidnt of 
this group to allocate a session to the remote system. The session is held 
('busy') until the conversation is terminated. 

2.   For CICS-initiated asynchronous processing. 
CICS applications that use the START command can name the sysidnt of this 
group. CICS uses the first 'non-busy' session to ship the start request. 
IMS sends a positive response to CICS as soon as it has queued the start 
request, so that the session is in use for a relatively short period. Consequently, 
the first session in the group shows the heaviest usage, and the frequency of 
usage decreases towards the last session in the group. 

3.   For IMS-initiated asynchronous processing. 
This group is also useful as part of the solution to a performance problem that 
can arise with CICS-initiated asynchronous processing. An IMS transaction that 
is initiated as a result of a START command shipped on a particular session 
uses the same session to ship its “reply” START command to CICS. For the 
reasons given in (2) above, the CICS START command was probably shipped 
on the busiest session and, because the session is busy and CICS is the 
contention winner, the replies from IMS may be queuing for a chance to use the 
session. 
However, facilities exist in IMS for a transaction to alter its default output 
session, and a switch to a session in this third group can reduce this sort of 
queuing problem.

 

 

Chapter 13. How to define connections to remote systems 181



Defining indirect links for transaction routing 
In some older releases of CICS (no longer supported), indirect links between CICS 
regions were required for transaction routing across intermediate regions. In a 
network consisting solely of currently-available CICS systems, indirect links are 
only required if you are using non-VTAM terminals. Optionally, you can define 
them for use with VTAM terminals. Indirect links are never used for function 
shipping, distributed program link, asynchronous processing, or distributed 
transaction processing. 

The following figure shows the concept of an indirect link. 
 

  DFHSIT TYPE=CSECT, 
         SYSIDNT=CICL, 
         APPLID=SYSCICS 
CICS-initiated distributed transaction processing 
  DEFINE CONNECTION(IMSA) 
         NETNAME(SYSIMS) 
         ACCESSMETHOD(VTAM) 
  DEFINE SESSIONS(csdname) 
         CONNECTION(IMSA) 
         SESSNAME(IMS1) 
         NETNAMEQ(DTP1) 
         PROTOCOL(LU61) 
  DEFINE SESSIONS(csdname) 
         . 
         . 
CICS-initiated asynchronous processing 
  DEFINE CONNECTION(IMSB) 
         NETNAME(SYSIMS) 
         ACCESSMETHOD(VTAM) 
  DEFINE SESSIONS(csdname) 
         CONNECTION(IMSB) 
         SESSNAME(IMS1) 
         NETNAMEQ(ASP1) 
         PROTOCOL(LU61) 
  DEFINE SESSIONS(csdname) 
         . 
         . 
IMS-initiated asynchronous processing 
  DEFINE CONNECTION(IMSC) 
         NETNAME(SYSIMS) 
         ACCESSMETHOD(VTAM) 
  DEFINE SESSIONS(csdname) 
         CONNECTION(IMSC) 
         SESSNAME(IMS1) 
         NETNAMEQ(IST1) 
         PROTOCOL(LU61) 
  DEFINE SESSIONS(csdname) 
         .                              . 
         .                              . 
 
Figure 56. Defining multiple links to an IMS node

 

182 CICS TS for z/OS 4.1: Intercommunication Guide



This figure illustrates a chain of systems (A, B, C, D) linked by MRO or APPC 
links (you cannot do transaction routing over LUTYPE6.1 links). 

It is assumed that you want to establish a transaction-routing path between a 
terminal-owning region A and an application-owning region D. There is no direct 
link available between system A and system D, but a path is available via the 
intermediate systems B and C. 

To enable transaction-routing requests to pass along the path, resource definitions 
for both the terminal (which may be an APPC connection) and the transaction 
must be available in all four systems. The terminal is a local resource in the 
terminal-owning system A, and a remote resource in systems B, C, and D. 
Similarly, the transaction is a local resource in the transaction-owning system D, 
and a remote resource in the systems A, B, and C. 

Defining indirect links in CICS Transaction Server for z/OS 
CICS systems reference remote terminals using a unique identifier that is formed 
from the applid (netname) of the terminal-owning region (TOR) and the identifier 
by which the terminal is known on the terminal-owning region. 

Terminal-owning Intermediate systems Application-owning
region (TOR) region (AOR)

A B C D

Transaction Transaction Transaction Transaction
defined as defined as defined as defined on
owned by B owned by C owned by D system D

Direct link Direct link
defined to D defined to C

Direct link Direct link
defined to C defined to B

Indirect Indirect
Direct link Direct link link defined link defined
defined to B defined to A to A via B to A via C

Terminal or Terminal or Terminal or Terminal or
connection connection connection connection
defined on defined as defined as defined as
system A owned by A owned by A owned by A

  

Figure 57. Indirect links for transaction routing

 

Chapter 13. How to define connections to remote systems 183



For more information on remote resource definition, see Chapter 16, “Defining 
remote resources,” on page 203. 

CICS must have access to the netname of the TOR to be able to form the 
fully-qualified terminal identifier. In old releases of CICS (no longer supported), an 
indirect link definition had two purposes. Where there was no direct link to the 
TOR, it: 
1.   Supplied the netname of the terminal-owning region. 
2.   Identified the direct link that was the start of the path to the terminal-owning 

region.

Thus, in Figure 57 on page 183, the indirect link definition in system D provides 
the netname of system A and identifies system C as the next system in the path. 
Similarly, the indirect link definition in system C provides the netname of system 
A and identifies system B as the next system in the path. System B has a direct link 
to system A, and therefore does not require an indirect link. 

In CICS Transaction Server for z/OS, unless you are using non-VTAM terminals, 
indirect links are optional. Different considerations apply, depending on whether 
you are using shippable or hard-coded terminal definitions. 

Shippable terminals  
Indirect links are not necessary to allow terminal definitions to be shipped to 
an AOR across intermediate systems. Each shipped definition contains a 
pointer to the previous system in the transaction routing path (or to an indirect 
connection to the TOR, if one exists). This allows routed transactions to be 
attached, by identifying the netname of the TOR and the path from the AOR to 
the TOR. 

 If several paths are available, you can use indirect links to specify the preferred 
path to the TOR. 

Note: Non-VTAM terminals are not shippable.

Hard-coded terminals  
If you are using VTAM terminals exclusively, indirect links are not required. 
You use the REMOTESYSNET option of the TERMINAL definition (or the 
CONNECTION definition, if the “terminal” is an APPC device) to specify the 
netname of the TOR; and the REMOTESYSTEM option to specify the next 
system in the path to the TOR. If several paths are available, use 
REMOTESYSTEM to specify the next system in the preferred path. 

 If you are using non-VTAM terminals, indirect links are required. This is 
because you cannot use RDO to define non-VTAM terminals; the DFHTCT 
TYPE=REMOTE or TYPE=REGION macros used to create the remote 
definitions do not include an equivalent of the REMOTESYSNET option of 
CEDA DEFINE TERMINAL.

 Therefore, in CICS Transaction Server for z/OS, you might decide to define 
indirect links: 
v   To specify the preferred path to the TOR, if more than one exists, and you are 

using shippable terminals. 
v   If you are using non-VTAM terminals for transaction routing across intermediate 

systems. 
v   To enable you to use existing remote terminal definitions that do not specify the 

REMOTESYSNET option. For example, you might have hundreds of remote 
VTAM terminals defined to a back-level system. If you introduce a new CICS 

 

184 CICS TS for z/OS 4.1: Intercommunication Guide



Transaction Server for z/OS back-end system into your network, you might 
want to copy the existing definitions to the CSD of the new system. If the 
structure of your network means that there is no direct link to the TOR, it might 
be quicker to define a single indirect link, rather than change all the copied 
definitions to include the REMOTESYSNET option.

Resource definition for transaction routing using indirect links 
This section outlines the resource definitions required to establish a 
transaction-routing path between a terminal-owning region SYS01 and an 
application-owning region SYS04 via two intermediate systems SYS02 and SYS03, 
using indirect links. 

The resource definitions required are shown in Figure 58 on page 186. 

Note: For clarity, the figure shows hard-coded remote terminal definitions that do 
not use the REMOTESYSNET option (if REMOTESYSNET had been used, indirect 
links would not be required). Shippable terminals could equally well have been 
used. 
 

 

Chapter 13. How to define connections to remote systems 185



SYS01 SYS02 SYS03 SYS04

DFHSIT DFHSIT DFHSIT DFHSIT
APPLID=SYS01 APPLID=SYS02 APPLID=SYS03 APPLID=SYS04
. . . .

Link between SYS01 and SYS02 Link between SYS03 and SYS04

DEFINE DEFINE DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(NEXT) CONNECTION(PREV)
NETNAME(SYS02) NETNAME(SYS01) NETNAME(SYS04) NETNAME(SYS03)
. . . .

DEFINE DEFINE DEFINE DEFINE
SESSIONS(csdname) SESSIONS(csdname) SESSIONS(csdname) SESSIONS(csdname)|
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(NEXT) CONNECTION(PREV)
. . . .

Indirect link from
SYS04 to SYS01

Link between SYS02 and SYS03 routed via SYS03

DEFINE DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(REMT)
NETNAME(SYS03) NETNAME(SYS02) NETNAME (SYS01)
. . ACCESSMETHOD

(INDIRECT)
DEFINE DEFINE INDSYS(PREV)
SESSIONS(csdname) SESSIONS(csdname)
CONNECTION(NEXT) CONNECTION(PREV)
. .

Indirect link from
SYS03 to SYS01
routed via SYS02

DEFINE
CONNECTION(REMT)

Note: NETNAME(SYS01)
This figure shows TERMINAL definitions. ACCESSMETHOD
CONNECTION definitions are appropriate (INDIRECT)
when the "terminal" is an APPC device. INDSYS(PREV)

The terminal The terminal The terminal The terminal

DEFINE DEFINE DEFINE DEFINE
TERMINAL(T42A) TERMINAL(T42A) TERMINAL(T42A) TERMINAL(T42A)
NETNAME(XXXXX) REMOTESYSTEM(PREV) REMOTESYSTEM(REMT) REMOTESYSTEM(REMT)
TYPETERM(DFHLU2) TYPETERM(DFHLU2) TYPETERM(DFHLU2) TYPETERM(DFHLU2)
. . . .

The transaction The transaction The transaction The transaction

DEFINE DEFINE DEFINE DEFINE
TRANSACTION(TRTN) TRANSACTION(TRTN) TRANSACTION(TRTN) TRANSACTION(TRTN)
REMOTESYSTEM(NEXT) REMOTESYSTEM(NEXT) REMOTESYSTEM(NEXT) PROGRAM(TRNP)
. . . .

Figure 58. Defining indirect links for transaction routing. Because the remote terminal definitions in SYS04 and SYS03 
do not specify the REMOTESYSNET option, indirect links are required.

 

186 CICS TS for z/OS 4.1: Intercommunication Guide



Defining the direct links 
The direct links between SYS01 and SYS02, SYS02 and SYS03, and SYS03 and 
SYS04 are MRO or APPC links defined as described earlier in this chapter. 

Defining the indirect links 
Indirect links to the TOR can be defined to some systems in a transaction-routing 
path and not to others, depending on the structure of your network and how you 
have coded your remote terminal definitions. 

For example, if one of the intermediate systems uses hard-coded terminal 
definitions that do not specify REMOTESYSNET and the system does not have a 
direct link to the TOR, an indirect link will be required. Indirect links are never 
required in the system to which the terminal-owning region has a direct link. 

In the current example, indirect links are defined in SYS04 and SYS03. The 
following rules apply to the definition of an indirect link: 
v   ACCESSMETHOD must be INDIRECT. 
v   NETNAME must be the applid of the terminal-owning region. 
v   INDSYS (meaning indirect system) must name the CONNECTION name of an 

MRO or APPC link that is the start of the path to the terminal-owning region. 
v   No SESSIONS definition is required for the indirect connection; the sessions that 

are used are those of the direct link named in the INDSYS option.

Defining the terminal 
If shippable terminals are used, no remote terminal definitions are required. 

The recommended methods for defining remote terminals and connections to a 
CICS Transaction Server for z/OS system are described in Chapter 16, “Defining 
remote resources,” on page 203. 

Figure 58 on page 186 shows hard-coded remote terminal definitions that do not 
specify the REMOTESYSNET option. If you use these: 
v   The REMOTESYSTEM (or SYSIDNT) option in the remote terminal or 

connection definition must always name a link to the TOR (that is, a 
CONNECTION definition on which NETNAME specifies the applid of the 
terminal-owning region). 

v   The named link must be the direct link to the terminal-owning region, if one 
exists. Otherwise, it must be an indirect link.

Defining the transaction 
The definition of remote transactions is described in Chapter 16, “Defining remote 
resources,” on page 203. 

Generic and specific applids for XRF 
CICS systems that use XRF have two applid names: a generic name and a specific 
name. If you are using XRF, you must specify both names on the APPLID 
parameter, because the active and alternate CICS systems must have the same 
generic applid and different specific applids. 

Specify the generic and specific names using the APPLID system initialization 
parameter: 
APPLID(=generic-applid,specific-applid) 

 

Chapter 13. How to define connections to remote systems 187



v   A CICS region's generic applid is the name by which CICS is known in the 
network. That is, it is the name quoted by remote CICS regions, on the 
NETNAME option of CONNECTION definitions or the APPLID option of 
IPCONN definitions, to identify this CICS region. 

v   A CICS system's specific applid is used to distinguish between the pair of XRF 
systems. It is the name quoted on a VTAM APPL statement, to identify this CICS 
to VTAM.

Important:  

Do not confuse the term generic applid with generic resource name. Remember that 
generic and specific applids apply only to systems that use XRF; CICS systems that 
don't use XRF have only one applid. 

A CICS system's generic resource name is defined on the GRNAME system 
initialization parameter and enables CICS to become a member of a VTAM generic 
resource group. See Chapter 12, “Configuring VTAM generic resources,” on page 
121. 

You cannot use both VTAM generic resources and XRF. If you use VTAM generic 
resources, you must specify only one name on the APPLID system initialization 
parameter.

 

188 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 14. TCP/IP management and control 

You can use TCP/IP management and control to monitor work that enters or 
leaves CICS over Transmission Control Protocol/Internet Protocol (TCP/IP) 
connections. 

TCP/IP management and control provides, for TCP/IP networks, a subset of the 
management functions already provided for APPC networks and some additional 
functions that are not available for APPC or MRO networks. 

TCP/IP networks are systems that are interconnected by these means: 
v   An IPIC connection (IPCONN). 

IPIC supports these intercommunication functions and releases: 
–   Distributed program link (DPL) calls between CICS TS 3.2, or later regions 
–   Distributed program link (DPL) calls between CICS TS and TXSeries Version 

7.1, or later 
–   Asynchronous processing of EXEC CICS START, START CHANNEL, and 

CANCEL commands, between CICS TS 4.1, or later regions 
–   Traditional transaction routing of 3270 terminals, where the terminal-owning 

region (TOR) is uniquely identified by an APPLID between CICS TS 4.1, or 
later regions 

–   ECI requests from CICS Transaction Gateway Version 7.1 or later
v   TCP/IP connections from clients that carry, for example, Web Interface, IIOP, or 

SOAP over HTTP requests inbound to CICS.

You can use TCP/IP management and control to perform, for example, these 
functions: 
v   Use CICSPlex SM, or an equivalent tool, for these purposes: 

–   Obtain a CICSplex-wide view of the TCP/IP network. 
–   Examine these items in real time: 

-   The TCP/IP network resources that a particular CICS region is using 
-   The work passing in and out of a particular CICS region over the TCP/IP 

network 
-   The CICS resources and tasks associated with a distributed transaction that 

flows across the CICSplex over the TCP/IP network 
-   The CICS region in which a distributed transaction originated

v   Save the data collected by CICS so that it can be examined offline, at some point 
after the tasks and resources to which it relates are no longer available.

You can use TCP/IP management and control for these reasons: 
v   To diagnose connectivity problems 
v   To investigate other problems, such as transaction delays 
v   To track work across the CICSplex 
v   To capture system data over time, for use in capacity planning 
v   To monitor the CICSplex

 

© Copyright IBM Corp. 1977, 2011 189



Some useful SPI commands 

You can use the following system programming interface (SPI) commands to 
retrieve information about IPIC connections: 

EXEC CICS EXTRACT STATISTICS 
Specify a RESTYPE of IPCONN to retrieve resource statistics for IPIC. Global 
statistics are not available. 

EXEC CICS INQUIRE ASSOCIATION 
In a TCP/IP network, this command returns information about a task; for 
example, how the task was started, and the IP address of the TCP/IP client 
that requested it to start. The task is specified by a task number, which 
typically has been returned, as one of a list of numbers, by the EXEC CICS 
INQUIRE ASSOCIATION LIST command. 

EXEC CICS INQUIRE ASSOCIATION LIST 
This command returns a list of tasks, in the local region, that have matching 
user correlation data in their associated data control blocks (ADCBs). Typically, 
the user correlation data has been added, at the point of origin of a distributed 
transaction, by a CICS XAPADMGR global user exit program. See “The 
XAPADMGR global user exit.” 

EXEC CICS INQUIRE TASK 
The IPALTFACILITIES option returns the address of a list of IDs, each of which 
identifies an IPCONN session that the task has used to communicate with 
another system. The LISTSIZE option returns the number of items in the list. 

EXEC CICS PERFORM STATISTICS 
Specify a statistics type of “IPCONN” to record resource statistics for IPIC 
connections. Global statistics are not available.

Socket application data (ApplData) 

CICS generates 40 bytes of socket application data (ApplData) for each of the TCP 
sockets that it owns. CICS uses the SIOCSAPPLDATA IOCTL socket function to 
associate this information with the z/OS Communications Server TCP/IP socket. 
You can use this information to correlate TCP/IP connections with the CICS 
regions and transactions using them. 

In CICS, you can obtain the ApplData information using the CECI INQUIRE 
ASSOCIATION transaction, CICSPlex SM displays, and SMF records. In TCP/IP, 
the ApplData information is available on the Netstat ALL/-A, ALLConn/-a and 
COnn/-c reports and can be searched with the APPLD/-G filter. See IP System 
Administrator's Commands for additional information on using ApplData with 
Netstat. The ApplData information is available in the SMF 119 TCP Connection 
Termination record. See IP Configuration Reference for additional information. The 
ApplData information is available through the Network Management Interface. See 
IP Programmer's Guide and Reference for more information. 

The XAPADMGR global user exit 

The exit program is called, if enabled, at the attach of nonsystem tasks for which 
no input Origin Descriptor Record is provided. 

For further information about the XAPADMGR exit, see the CICS Customization 
Guide. 

 

190 CICS TS for z/OS 4.1: Intercommunication Guide



CICS provides a sample global user exit program, DFH$APAD, for use at the 
XAPADMGR exit point. The exit program is called, if enabled, when nonsystem 
tasks for which no input Origin Descriptor Record is provided are attached. 

DFH$APAD performs the following processing: 
v   Provides addressability to the association data provided as input to the exit. 
v   Chooses a field from this data and places it in the output buffer. 
v   Adds a field to the user correlation data in the output buffer.

Using CICSPlex SM to analyze TCP/IP traffic 

As noted in “The XAPADMGR global user exit” on page 190, user correlation 
information added to the associated data origin descriptor of a task, at the point of 
origin of the distributed transaction, can be used as search keys for later processing 
carried out through CICSPlex SM. 

A search key (or “filter string”) can contain the following “wildcard” characters: 

? Matches exactly one arbitrary character 

* Matches zero or more arbitrary characters

A filter string with no wildcards must be an exact match to the entire correlator. 
Therefore, a filter string that is a substring of the correlator must contain at least 
one wildcard character to match any user correlator string. For example, to find a 
substring that might be anywhere in the data, add both a leading and a trailing '*' 
to your filter string. 

The CICSPlex SM TASKASSC resource table provides information about the tasks 
that make up a distributed transaction. You can filter the records using a substring 
of the user correlation data added, by a CICS XAPADMGR global user exit 
program, to the user data section of the associated data origin descriptor of the 
task. 

For more information, see the CICSPlex System Manager Operations Views Reference. 

Using CICS monitoring to analyze TCP/IP traffic 

Fields 360 - 372 in the performance class monitoring records in group DFHCICS 
relate to TCP/IP. See the CICS Performance Guide. 

 

Chapter 14. TCP/IP management and control 191

|



192 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 15. Managing APPC connections 

You can use the master terminal transaction, CEMT, to manage APPC connections. 
It shows how the action of the CEMT commands is affected by the way the 
connections have been defined to CICS. 

The commands are described under the headings: 
v   Acquiring the connection 
v   Controlling and monitoring sessions on the connection 
v   Releasing the connection.

The commands used to achieve these actions are: 
v   CEMT SET CONNECTION ACQUIRED|RELEASED 
v   CEMT SET MODENAME AVAILABLE|ACQUIRED|CLOSED

Detailed formats and options of CEMT commands are given in the CICS Supplied 
Transactions manual. 

The information is mainly about parallel-sessions connections between CICS 
regions. 

General information about managing APPC links 
The operator commands controlling APPC connections cause CICS to execute 
many internal processes, some of which involve communication with the partner 
systems. 

The major features of these processes are described on the following pages but you 
should note that the processes are sometimes independent of one another and can 
be asynchronous. This makes simple descriptions of them imprecise in some 
respects. The execution can occasionally be further modified by independent events 
occurring in the network, or simultaneous operator activity at both ends of an 
APPC connection; these circumstances are more likely when a component of the 
network has failed and recovery is in progress. The following sections explain the 
normal operation of the commands. 

Note: The principles of operation described in these sections also apply to the 
EXEC CICS INQUIRE CONNECTION, INQUIRE MODENAME, SET 
CONNECTION, and SET MODENAME commands. For programming information 
about these commands, see the CICS System Programming Reference manual. 

The rest of this chapter contains the following topics: 
v   “Acquiring a connection” on page 194 
v   “Controlling sessions with the SET MODENAME commands” on page 196 
v   “Releasing the connection” on page 198 
v   “Summary of APPC link management” on page 201.

 

© Copyright IBM Corp. 1977, 2011 193



Acquiring a connection 
The SET CONNECTION ACQUIRED command causes CICS to establish a 
connection with a partner system. 

The major processes involved in this operation are: 
v   Establishing of the two LU services manager sessions in the modegroup 

SNASVCMG. 
v   Initiating of the change-number-of-sessions (CNOS) process by the partner 

initiating the connection. 
CNOS negotiation is executed (using one of the LU services manager sessions) 
to determine the numbers of contention-winner and contention-loser sessions 
defined in the connection. The results of the negotiation are reported in 
messages DFHZC4900 and DFHZC4901. 

v   Establishing of the sessions that carry CICS application data.

The following processes, also part of connection establishment, are described in 
Chapter 26, “Recovery and restart in interconnected systems,” on page 289: 
v   Exchanging lognames 
v   Resolving and reporting synchronization information.

Connection status during the acquire process 
The status of the connection before and during the acquire process is reported by 
the INQUIRE CONNECTION command. 

Released 
Initial state before the SET CONNECTION ACQUIRED command. All the 
sessions in the connection are released. 

Obtaining 
Contact has been made with the partner system, and CNOS negotiation is 
in progress. 

Acquired 
CNOS negotiation has completed for all modegroups. In this status CICS 
has bound the LU services manager sessions in the modegroup 
SNASVCMG. Some of the sessions in the user modegroups may also have 
been bound, either as a result of the AUTOCONNECT option on the 
SESSIONS definition, or to satisfy allocate requests from applications.

The results of requests for the use of a connection by application programs depend 
on the status of the sessions. You can control the status of the sessions with the 
AUTOCONNECT option of the SESSIONS definition as described in the following 
section. 

Effects of the AUTOCONNECT option 
The effect of the AUTOCONNECT option of the SESSIONS definition is to control 
the acquisition of sessions in modegroups associated with the connection. 

The meanings of the AUTOCONNECT option for APPC connections are described 
in “The AUTOCONNECT option” on page 173. Each modegroup has its own 
AUTOCONNECT option and the setting of this option affects the sessions in the 
modegroup as described in Table 12 on page 195. 

 

194 CICS TS for z/OS 4.1: Intercommunication Guide



Table 12. Effect of AUTOCONNECT on the SESSIONS definition 

Setting Effect 

YES CNOS negotiation with the partner system is performed for the 
modegroup, and all negotiated contention-winner sessions are acquired 
when the connection is acquired. 

NO CNOS negotiation with the partner system is performed, but no sessions 
are acquired. Contention-winner sessions can be bound individually 
according to the demands of application programs (for example, when a 
program issues an ALLOCATE command), or the SET MODENAME 
ACQUIRED command can be used to bind contention-winner sessions. 

ALL CNOS negotiation with the partner system is performed for the 
modegroup, and all negotiated sessions, contention winners, and 
contention losers are acquired when the connection is acquired. This 
setting should be necessary only on connections to non-CICS systems.

  

When the connection is in ACQUIRED status, the INQUIRE MODENAME 
command can be used to determine whether the user sessions have been made 
available and activated as required. The binding of user sessions is not completed 
instantaneously, and you may have to repeat the command to see the final results 
of the process. 

CICS can bind contention-winner sessions to satisfy an application request, but not 
contention losers. However, it can assign contention-loser sessions to application 
requests if they are already bound. Considerations for binding contention losers are 
described in the next section. 

Binding contention-loser sessions 
Contention-loser sessions on one system are contention-winner sessions on the 
partner system, and should be bound by the partner as described above. If you 
want all sessions to be bound, you must make sure each side binds its contention 
winners. 

If the connection is between two CICS systems, specify AUTOCONNECT(YES) on 
the SESSIONS definition for each system, or issue CEMT SET MODENAME 
ACQUIRED from both systems. If you are linked to a non-CICS system that is 
unable to send bind requests, specify AUTOCONNECT(ALL) on your SESSIONS 
definition. 

If the remote system can send bind requests, find out how you can make it bind its 
contention winners so that it does so immediately after the SNASVCMG sessions 
have been bound. 

The ALLOCATE command, either as an explicit command in your application or 
as implied in automatic transaction initiation (ATI), cannot bind contention-loser 
sessions, although it can assign them to conversations if they are already bound. 

Effects of the MAXIMUM option 
The MAXIMUM option of the SESSIONS definition specifies the maximum number 
of sessions that can be supported for the modegroup, and the number of these that 
are supported as contention winners. 

Operation of APPC connections is made easier if the maximum number of sessions 
at each end of the connection match, and the number of contention-winner 

 

Chapter 15. Managing APPC connections 195



sessions specified at the two ends add up to this maximum number. If this is done, 
CNOS negotiation does not change the numbers specified. 

If the specifications at each end of the connection do not match, as has just been 
described, the actual values are negotiated by the LU services managers. The effect 
of the negotiation on the maximum number of sessions is to adopt the lower of the 
two values. An architected algorithm is used to determine the number of 
contention winners for each partner, and the results of the negotiation are reported 
in messages DFHZC4900 and DFHZC4901. 

These results can also be deduced, as shown in Table 13, by issuing a CEMT 
INQUIRE MODENAME command. 

 Table 13. Data displayed by INQ MODENAME 

Display Interpretation 

MAXimum The value specified in the sessions definition for this modegroup. This 
represents the true number of usable sessions only if it is equal to or less 
than the corresponding value displayed on the partner system. 

AVAilable Represents the result of the most recent CNOS negotiation for the number 
of sessions to be made available and potentially active. 

Following the initial CNOS negotiation, it reports the result of the 
negotiation of the first value of the MAXIMUM option. 

ACTive The number of sessions currently bound.
  

To change the MAXIMUM values, release the connection, set it OUTSERVICE, 
redefine it with new values, and install it using the CEDA transaction. 

Controlling sessions with the SET MODENAME commands 
The SET MODENAME commands can be used to control the sessions within the 
modegroups associated with an APPC connection, without releasing or reacquiring 
the connection. 

The processes executed to accomplish this are: 
v   CNOS negotiation with the partner system to define the changes that are to take 

place. 
v   Binding or unbinding of the appropriate sessions.

The algorithms used by CICS to negotiate with the partner the numbers of sessions 
to be made available are complex, and the numbers of sessions acquired may not 
match your expectation. The outcome can depend on the following: 
v   The history of preceding SET MODENAME commands 
v   The activity in the partner system 
v   Errors that have caused CICS to place sessions out of service.

Modegroups can normally be controlled with the few simple commands described 
in Table 14. 

 Table 14. SET MODENAME commands 

Command Effect 

SET MODENAME ACQUIRED Acquires all negotiated contention-winner sessions. 

 

196 CICS TS for z/OS 4.1: Intercommunication Guide



Table 14. SET MODENAME commands (continued) 

Command Effect 

SET MODENAME CLOSED Negotiates with the partner to reduce the available 
number of sessions to zero, releases the sessions, and 
prevents any attempt by the partner to negotiate or 
activate any sessions in the modegroup. Only the 
system issuing the command can subsequently 
increase the session count. 

Queued session requests are honored before sessions 
are unbound. 

SET MODENAME 
AVAIL(maximum) ACQUIRED 

If this command is issued when the modegroup is 
closed, the sessions are negotiated as if the 
connection had been newly acquired, and the 
contention-winner sessions are acquired. It can also 
be used to rebind sessions that have been lost due to 
errors that have caused CICS to place sessions out of 
service.

  

Command scope and restrictions 
User modegroups, which are built from CEDA DEFINE SESSIONS (or equivalent 
macro) definitions, can be modified by using the SET MODENAME command or 
by overtyping the INQUIRE MODENAME display data. 

The SNASVCMG modegroup is built from the CONNECTION definition and any 
attempts to modify its status with a SET MODENAME command, or by overtyping 
the INQUIRE MODENAME display data, are suppressed. It is controlled by the 
SET CONNECTION command, or by overtyping the INQUIRE CONNECTION 
display data, which also affects associated user modegroups. 

CEMT INQUIRE NETNAME, where the netname is the applid of the partner 
system, displays the status of all sessions associated with that connection, and can 
be useful in error diagnosis. Any attempt to alter the status of these sessions by 
overtyping, is suppressed. 

You must use the SET|INQ CONNECTION∨MODENAME to manage the status of 
user sessions and to control negotiation with remote systems. 

A change to an APPC connection or modegroup can be requested by an operator 
issuing CEMT SET commands or by an application program issuing EXEC CICS 
SET commands. It is possible to issue one of these SET commands while a 
previous, perhaps contradictory, SET command is still in progress. This is 
particularly likely to occur in systems configured with large numbers of parallel 
sessions, in which the status of many sessions may be affected by an individual 
change to a connection or modegroup. Such overlapping SET commands can 
produce unpredictable results. You should therefore ensure that previously issued 
SET commands have fully completed before issuing the next SET command. 

A similar situation can occur at startup if a SET CONNECTION or SET 
MODEGROUP command is issued while sessions are autoconnecting. You should 
therefore also ensure that all sessions have finished autoconnecting before issuing 
such a SET command. 

 

Chapter 15. Managing APPC connections 197



Releasing the connection 
The SET CONNECTION RELEASED command causes CICS to quiesce a 
connection and release all sessions associated with it. 

The major processes involved in this operation are: 
v   Executing the CNOS process to inform the partner system that the connection is 

closing down. The number of available sessions on all modegroups is reduced to 
zero. 

v   Quiescing transaction activity using the connection. This process allows the 
completion of transactions that are using sessions and queued ALLOCATE 
requests; new requests for session allocation are refused with the SYSIDERR 
condition. 

v   Unbinding of the user and LU services manager sessions.

Connection status during the release process 
The following states are reported by the CEMT INQUIRE CONNECTION 
command before and during the release process. 

Acquired  
Sessions are acquired; the sessions can be allocated to transactions. 

Freeing  
Release of the connection has been requested and is in progress. 

Released 
All sessions are released. 

If you have control over both ends of the connection, or if your partner is unlikely 
to issue commands that conflict with yours, you can use SET CONNECTION 
RELEASED to quiesce activity on the connection. When the connection is in the 
RELEASED state, SET CONNECTION OUTSERVICE can be used to prevent any 
attempt by the partner to reacquire the connection. 

The effects of limited resources 
If an APPC connection traverses nonleased links (such as Dial, ISDN, X.25, X.21, or 
Token Ring links) to communicate to remote systems, the links can be defined 
within the network as limited resources. CICS recognizes this definition and 
automatically unbinds the sessions as soon as no transactions require them. If new 
transactions are invoked that require the connections, CICS binds the appropriate 
number of sessions. 

The connection status is shown by the CEMT INQUIRE CONNECTION command 
as follows: 

Acquired 
Some of the sessions in the connection are bound, and are probably in use. 
The LU services manager sessions in modegroup SNASVCMG may be 
unbound. 

Available 
The connection has been acquired, but there are no transactions that 
currently require the use of the connection. All the sessions have been 
unbound because they are defined in the network as limited resources.

 

198 CICS TS for z/OS 4.1: Intercommunication Guide



The connection behaves in other ways exactly as for a connection over 
non-limited-resource links. The SET MODENAME and SET CONNECTION 
RELEASED commands operate normally. 

Making the connection unavailable 
The SET CONNECTION RELEASED command quiesces transactions using the 
connection and releases the connection. 

It cannot, on its own, prevent reacquisition of the connection from the partner 
system. To prevent your partner from reacquiring the connection, you must execute 
a sequence of commands. The choice of command sequence determines the status 
the connection adopts and how it responds to further commands from either 
partner. 

If the number of available sessions for every modegroup of a connection is reduced 
to zero (by, for example, a CEMT SET MODENAME AVAILABLE(0) command), 
ALLOCATE requests are rejected. Transaction routing and function shipping 
requests are also rejected. The connection is effectively unavailable. However, 
because the remote system can renegotiate the availability of sessions and cause 
those sessions to be bound, you cannot be sure that this state will be held. 

To prevent your partner from acquiring sessions that you have made unavailable, 
use the CEMT SET MODENAME CLOSED command. This reduces the number of 
available user sessions in the modegroup to zero and also locks the modegroup. 
Even if your partner now issues SET CONNECTION RELEASED followed by SET 
CONNECTION ACQUIRED, no sessions in the locked modegroup become bound 
until you specify an AVAILABLE value greater than zero. 

If you lock all the modegroups, you make the connection unavailable, because the 
remote system can neither bind sessions nor do anything to change the state. 

Having closed all the modegroups for a connection, you can go a step further by 
issuing CEMT SET CONNECTION RELEASED. This unbinds the SNASVCMG (LU 
services manager) sessions. An inquiry on the CONNECTION returns INSERVICE 
RELEASED (or INSERVICE FREEING if the release process is not complete). 

If you now enter SET CONNECTION ACQUIRED, you free all locked modegroups 
and the connection is fully established. If, instead, your partner issues the same 
command, only the SNASVCMG sessions are bound. 

You can prevent your partner from binding the SNASVCMG sessions by invoking 
CEMT SET CONNECTION OUTSERVICE, which is ignored unless the connection 
is already in the RELEASED state. 

To summarize, you can make a connection unavailable and retain it under your 
control by issuing these commands in the order shown: 
 

 

Chapter 15. Managing APPC connections 199



Allocating from APPC mode groups with no available sessions 
An application program can issue ALLOCATE commands for APPC sessions that 
can be satisfied in either of two ways. 
1.   Only by a session in a particular mode group 
2.   By a session in any mode group on the connection.

An operator can issue CEMT SET MODENAME AVAILABLE(0) or CEMT SET 
MODENAME CLOSE to reduce the number of available sessions on an individual 
mode group to zero. 

If an ALLOCATE for a particular mode group is issued when that mode group has 
no available sessions, the command is immediately rejected with the SYSIDERR 
condition. 

If an ALLOCATE command is issued without specifying a particular mode group, 
and no mode groups on the connection have any sessions available, this command 
is immediately rejected with the SYSIDERR condition. 

If a relevant mode group is still draining when an allocate request is received, the 
allocate is satisfied and added to the drain queue. An operator command to reduce 
the number of available sessions to zero does not complete until draining 
completes. In a very busy system allocating many sessions, this may mean that 
such modegroup operator commands take a long time to complete. 

Diagnosing and correcting error conditions 
User sessions that have become unavailable because of earlier failures can be 
brought back into use by restoring or increasing the available count with the SET 
MODENAME AVAILABLE(n) command. The addition of the ACQUIRED option to 
this command will result in the binding of any unbound contention-winner 
sessions. 

If the SNASVCMG sessions become unbound while user sessions are active, the 
connection is still acquired. A SET CONNECTION ACQUIRED command binds all 
contention-winner sessions in all modegroups, and may be sufficient to reestablish 
the SNASVCMG sessions. 

CEMT SET MODENAME(*) CONNECTION(....) CLOSED 

         [The CONNECTION option is significant only if 
         the MODENAME applies to more than one 
         connection.] 

INQ MODENAME(*) CONNECTION(....) 

[Repeat this command until the AVAILABLE count for all 
non-SNAVCMG modegroups becomes zero.] 

SET CONNECTION(....) RELEASED 
       INQ CONNECTION(....) 

[Repeat this command until the RELEASED status is displayed.] 

SET CONNECTION(....) OUTSERVICE 
 
Figure 59. Making the connection unavailable

 

200 CICS TS for z/OS 4.1: Intercommunication Guide



Sometimes, you may not be able to recover sessions, although the original cause of 
failure has been removed. Under these circumstances, you should first release, then 
reacquire, the connection. 

Summary of APPC link management 

Table 15 summarizes the effect of CEMT commands on the status of an APPC link. 

 Table 15. Effect of CEMT commands on an operational APPC link 

Commands issued in sequence shown below 

1 1 1 SET MODENAME AVAILABLE(0) 

1 1 1 SET MODENAME CLOSED 

2 2 2 2 1 1 SET CONNECTION RELEASED 

3 3 2 SET CONNECTION OUTSERVICE 

Resulting states and reactions 

N N N N N N N N ALLOCATE requests suspended 

Y Y N N N N Y N Partner can renegotiate 

Y Y Y Y Y Y Y Y 
ALLOCATE rejected with 
SYSIDERR 

N Y Y N Y Y Y Y SNASVCMG sessions released 

— Y N — Y N Y N Partner can rebind SNASVCMG
  

Command scope and restrictions 
User modesets, which are built from CEDA DEFINE SESSIONS definitions, may be 
modified by using the SET MODENAME command or by overtyping the 
INQUIRE MODENAME display data. 

The SNASVCMG modeset, on the other hand, is built from the CONNECTION 
definition and any attempts to modify its status with a SET or INQUIRE 
MODENAME command is suppressed. It is, however, controlled by the SET|INQ 
CONNECTION, which also affects the user modesets. 

CEMT INQUIRE NETNAME, where the netname is the applid of the partner 
system, displays the status of all sessions associated with that link. Any attempt to 
alter the status of these sessions is suppressed. You must use SET|INQ 
CONNECTION|MODENAME to manage the status of user sessions and to control 
negotiation with remote systems. INQ NETNAME may also be useful in error 
diagnosis. 

 

Chapter 15. Managing APPC connections 201



202 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 16. Defining remote resources 

This chapter contains guidance information about identifying and defining remote 
resources. 

The chapter contains the following topics: 
v   “Which remote resources need to be defined?” 
v   “Local and remote names for resources” on page 204 
v   “Defining remote resources for function shipping” on page 205 
v   “Defining remote resources for DPL” on page 208 
v   “Defining remote resources for asynchronous processing” on page 210 
v   “Defining remote resources for transaction routing” on page 211 
v   “Defining remote resources for DTP” on page 227.

Which remote resources need to be defined? 
Remote resources are resources that reside on a remote system but which need to 
be accessed by the local CICS system. In general, you have to define all these 
resources in your local CICS system, in much the same way as you define your 
local resources, by using CICS resource definition online (RDO) or resource 
definition macros, depending on the resource type. 

You may need to define remote resources for CICS function shipping, DPL, 
asynchronous processing (START command shipping), and transaction routing. No 
remote resource definition is required for distributed transaction processing. But 
see““A note on daisy-chaining.” 

The remote resources that can be defined are: 
v   Remote files (function shipping) 
v   Remote DL/I PSBs (function shipping) 
v   Remote transient data destinations (function shipping) 
v   Remote temporary storage queues (function shipping) 
v   Remote programs for distributed program link (DPL) 
v   Remote terminals (transaction routing) 
v   Remote APPC connections (transaction routing) 
v   Remote transactions (transaction routing and asynchronous processing).

All remote resources must, of course, also be defined on the systems that own 
them. 

A note on daisy-chaining 
The descriptions of how to define remote resources in this chapter usually assume 
that there is a direct link between the local CICS and that on which the remote 
resource resides. 

In fact, in all types of CICS intercommunication, the local and remote systems need 
not be directly connected. A request for a remote resource can be daisy-chained 

 

© Copyright IBM Corp. 1977, 2011 203



across CICS systems by defining the resource as remote in each intermediate 
system, as well as (where necessary) in the local system. 

Note: The following types of request cannot be daisy-chained: 
v   Dynamically-routed DPL requests—see “Daisy-chaining of DPL requests” on 

page 101 
v   Dynamically-routed transactions started by non-terminal-related START 

commands 
v   Dynamically-routed transactions that are associated with CICS business 

transaction services activities.

Local and remote names for resources 
CICS resources are usually referred to by name: a file name for a file, a data 
identifier for a temporary storage queue, and so on. When you are defining remote 
resources, you must consider both the name of the resource on the remote system 
and the name by which it is known in the local system. 

CICS definitions for remote resources all have a REMOTENAME option 
(RMTNAME on macro-level definitions) to enable you to specify the name by 
which the resource is known on the remote system. If you omit this option, CICS 
assumes that the local and remote names of the resource are identical. 

Local and remote resource naming is illustrated in Figure 60. 
 

Figure 60 illustrates the relationship between local and remote resource names. It 
shows two files, FILEA and FILEB, which are owned by a remote CICS system 
(CICSB), together with their definitions as remote resources in the local CICS 
system CICSA. 

FILEA has the same name on both systems, so that a reference to FILEA on either 
system means the same file. 

      CICSA                                     CICSB 
  (Local System)                           (Remote System) 
  
 DFHSIT TYPE=                                DFHSIT TYPE= 
        ,APPLID=CICSA       1 
                                          3          ,APPLID= 
  
 DEFINE CONNECTION(CICR)    2 
        NETNAME(CICSB)      3 
                                             DEFINE CONNECTION(CICL) 
                                          1         NETNAME(CICSA) 
  
                                          4  DEFINE FILE(FILEA) 
 DEFINE FILE(FILEA)         4 
        REMOTESYSTEM(CICR)  2 
  
 DEFINE FILE(FILEB) 
  
                                          5  DEFINE FILE(FILEB) 
 DEFINE FILE(local-name) 
        REMOTESYSTEM(CICR)  2 
        REMOTENAME(FILEB)   5 
 
Figure 60. Local and remote resource names

 

204 CICS TS for z/OS 4.1: Intercommunication Guide



FILEB is provided with a local name on the local system, so that the file is referred 
to by its local name in the local system and by FILEB on the remote system. The 
“real” name of the remote file is specified in the REMOTENAME option. Note that 
CICSA can also own a local file called FILEB. 

In naming remote resources, be careful not to create problems for yourself. You 
could, for instance, in Figure 60 on page 204, define FILEA in CICSB with 
REMOTESYSTEM(CICL). If you did that, CICS would recursively reship any 
request for FILEA until all available sessions had been allocated. 

Defining remote resources for function shipping 
You may have to define these remote resources if you are using CICS function 
shipping. 
v   Remote files 
v   Remote DL/I PSBs 
v   Remote transient data destinations 
v   Remote temporary storage queues.

Defining remote files 
A remote file is a file that resides on another CICS system. 

CICS file control requests that are made against a remote file are shipped to the 
remote system by means of CICS function shipping. 

Applications can be designed to access files without being aware of their location. 
To support this facility, the remote file must be defined (with the REMOTESYSTEM 
option) in the local system. 

Alternatively, CICS application programs can name a remote system explicitly on 
file control requests, by means of the SYSID option. If this is done, there is no need 
for the remote file to be defined on the local CICS system. 

A remote file is defined using RDO. The definitions shown below provide CICS 
with sufficient information to enable it to ship file control requests to a specified 
remote system. 
 

Although MRO is supported for both user-maintained and CICS-maintained 
remote data tables, CICS does not allow you to define a local data table based on a 
remote source data set. However, there are ways around this restriction. (See “File 
control” on page 34.) 

Resource definition online 
DEFINE 
   FILE(name) 
   GROUP(.....) 
   DESCRIPTION(......) 
 Remote Attributes 
   REMOTESYSTEM(name) 
   REMOTENAME(name) 
   RECORDSIZE(record-size) 
   KEYLENGTH(key-length) 
 
Figure 61. Defining a remote file (function shipping)

 

Chapter 16. Defining remote resources 205



The name of the remote system 
The name of the remote system to which file control requests for this file are to be 
shipped is specified in the REMOTESYSTEM option. If the name specified is that 
of the local system, the request is not shipped. 

File names 
The name by which the file is known on the local CICS system is specified in the 
FILE option. This is the name that is used in file control requests by application 
programs in the local system. 

The name by which the file is known on the remote CICS system is specified in the 
REMOTENAME option. This is the name that is used in file control requests that 
are shipped by CICS to the remote system. 

If the name of the file is to be the same on both the local and the remote systems, 
the REMOTENAME option need not be specified. 

Record lengths 
The record length of a remote file can be specified in the RECORDSIZE option. 

If your installation uses the C language, you should specify the record length for 
any file that has fixed-length records. 

In all other cases, the record length either is a mandatory option on file control 
commands or can be deduced by the command-language translator. 

Sharing file definitions 
In some circumstances, two or more CICS systems can share a common CICS 
system definition (CSD) file. 

(For information about sharing a CSD, see Sharing the CSD in non-RLS mode, in 
the CICS System Definition Guide.) If the local and remote systems share a CSD, you 
need define each VSAM file used in function shipping only once. 

A file must be fully defined by means of DEFINE FILE, just like a local file 
definition. In addition, the REMOTESYSTEM option must specify the sysidnt of the 
file-owning region. When such a file is installed on the file-owning region, a full, 
local, file definition is built. On any other system, a remote file definition is built. 

Defining remote DL/I PSBs 
To enable the local CICS system to access remote DL/I databases, you must define 
the remote PSBs in a PDIR. 

The form of macro used for this purpose is: 
 

This entry refers to a PSB that is known to IMS/ESA® DM on the system identified 
by the SYSIDNT option. 

DFHDLPSB TYPE=ENTRY 
         ,PSB=psbname 
         ,SYSIDNT=name 
         ,MXSSASZ=value 
         [,RMTNAME=name] 
 
Figure 62. Macro for defining remote DL/I PSBs

 

206 CICS TS for z/OS 4.1: Intercommunication Guide



The SYSIDNT and MXSSASZ operands are mandatory, because the PDIR contains 
only remote entries. 

Defining remote transient data destinations 
A remote transient data destination is one that resides on another CICS system. 
CICS transient data requests that are made against a remote destination are 
shipped to the remote system by CICS function shipping. 

CICS application programs can name a remote system explicitly on transient data 
requests, by using the SYSID option. If this is done, there is no need for the remote 
transient data destination to be defined on the local CICS system. 

More generally, however, applications are designed to access transient data 
destinations without being aware of their location, and in this case the transient 
data queue must be defined as a remote destination. 

A remote definition provides CICS with sufficient information to enable it to ship 
transient data requests to the specified remote system. Remote definitions are 
created as shown in Figure 63. 
 

Defining remote temporary storage queues 
A remote temporary storage queue is one that resides on another CICS system. 
CICS temporary storage requests that are made against a remote queue are 
shipped to the remote system by CICS function shipping. 

CICS application programs can name a remote system explicitly on temporary 
storage requests, by using the SYSID option. If this is done, there is no need for the 
remote temporary storage queue to be defined on the local CICS system. 

More generally, however, applications are designed to access temporary storage 
queues without being aware of their location. Whether or not the SYSID option has 
been coded on the temporary storage request, you could use an XTSEREQ global 
user exit program to direct the request to a system on which the appropriate queue 
is defined. If you use this method, there is again no need for the remote temporary 
storage queue to be defined on the local system. For programming information 
about the XTSEREQ and XTSEREQC global user exits, see Temporary storage 
EXEC interface program exits, in the CICS Customization Guide. 

If the temporary storage request does not explicitly name the remote system, and 
you are not using an XTSEREQ exit, then the remote destination must be defined 
in the local temporary storage table. 

A remote entry in the temporary storage table provides CICS with sufficient 
information to enable it to ship temporary storage requests to a specified remote 

  
Definition using CEDA 
DEFINE 
   TDQUEUE(name) 
   GROUP(groupname) 
   DESCRIPTION(text) 
 Remote Attributes 
   REMOTESYSTEM(sysidnt) 
   REMOTENAME(name) 
   REMOTELENGTH(length) 
 
Figure 63. Sample definitions for remote transient data queues

 

Chapter 16. Defining remote resources 207



system. It is defined by a DFHTST TYPE=REMOTE resource definition macro. The 
format of this macro is shown in Figure 64. 
   

Defining remote resources for DPL 
You may have to define remote server programs if you are using CICS DPL. 

A remote server program is a program that resides on another CICS system. CICS 
program-control LINK requests that are made against a remote program are 
shipped to the remote system by means of CICS DPL. 

Defining remote server programs 
A remote server program can be defined using the CEDA transaction. 

Figure 65 shows the program attributes that you need to specify. How you specify 
the attributes depends on whether DPL requests for the program are to be routed 
to the remote region statically or dynamically. 
   

The name of the remote system 
To route DPL requests for the program statically you must complete the following 
tasks. 
v   Allow the value of the DYNAMIC option to default to NO. 
v   On the REMOTESYSTEM option, specify the name of the server region to which 

LINK requests for this program are to be shipped. The name must be the name 
of an installed CONNECTION definition or an installed IPCONN definition.

An EXEC CICS LINK command that names the program is shipped to the server 
region named on the REMOTESYSTEM option. 

To route DPL requests for the program dynamically: 
v   Specify DYNAMIC(YES). 
v   Do not specify the REMOTESYSTEM option; or use REMOTESYSTEM to specify 

a default server region.

An EXEC CICS LINK command that names the program causes the dynamic 
routing program to be invoked. The routing program can select the server region 
to which the request is shipped. 

DFHTST   TYPE=REMOTE 
         ,SYSIDNT=name 
         ,DATAID=character-string 
         [,RMTNAME=character-string] 
 
Figure 64. Macro for defining remote temporary storage queues

DEFINE 
   PROGRAM(name) 
   GROUP(.....) 
   DESCRIPTION(......) 
 Remote Attributes 
   REMOTESYSTEM(name) 
   REMOTENAME(name) 
   TRANSID(name) 
   DYNAMIC(NO|YES) 
 
Figure 65. Defining a remote program (DPL)

 

208 CICS TS for z/OS 4.1: Intercommunication Guide



Program names 
The name by which the server program is known on the local CICS system is 
specified in the PROGRAM option. This is the name that is used in LINK requests 
by client programs in the local system. 

The name by which the server program is known on the remote CICS system is 
specified in the REMOTENAME option. This is the name that is used in LINK 
requests that are shipped by CICS to the remote system. 

If the name of the server program is to be the same on both the local and the 
remote systems, the REMOTENAME option need not be specified. 

Transaction names 
It is possible to use the program resource definition to specify the name of the 
mirror transaction under which the program, when used as a DPL server, is to run. 
The TRANSID option is used for this purpose. 

For dynamic requests that are routed using the CICSPlex System Manager 
(CICSPlex SM), the TRANSID option takes on a special significance, because 
CICSPlex SM's routing logic is transaction-based. CICSPlex SM routes each DPL 
request according to the rules specified for its associated transaction. 

Note: The CICSPlex SM system programmer can use the EYU9WRAM 
user-replaceable module to change the transaction ID associated with a DPL 
request. 

For introductory information about CICSPlex SM, see the CICSPlex SM Concepts 
and Planning manual. 

When definitions of remote server programs aren't required 
There are some circumstances in which you may not need to install a static 
definition of a remote server program. 
v   The server program is to be autoinstalled. 

As an alternative to being statically defined in the client system, the remote 
server program can be autoinstalled when a DPL request for it is first issued. If 
you use this method, you need to write an autoinstall user program to supply 
the name of the remote system. (For details of the CICS autoinstall facility for 
programs, see Autoinstalling programs, map sets, and partition sets, in the CICS 
Resource Definition Guide. For programming information about writing 
program-autoinstall user programs, see Writing a program to control autoinstall 
of APPC connections, in the CICS Customization Guide.) 
When the autoinstall user program is invoked, it can install: 

A local definition of the server program 
CICS runs the server program on the local region. 

A definition that specifies REMOTESYSTEM(remote_region) and 
DYNAMIC(NO)  

CICS ships the LINK request to the remote region. 

A definition that specifies DYNAMIC(YES) 
CICS invokes the dynamic routing program to route the LINK request. 

Note: The DYNAMIC attribute takes precedence over the 
REMOTESYSTEM attribute. Thus, a definition that specifies both 
REMOTESYSTEM(remote_region) and DYNAMIC(YES) defines the 

 

Chapter 16. Defining remote resources 209



program as dynamic, rather than as residing on a particular remote 
region. (In this case, the REMOTESYSTEM attribute names the default 
server region passed to the dynamic routing program.)

No definition of the server program 
CICS invokes the dynamic routing program to route the LINK request. 

Note: This assumes that the autoinstall control program chooses not to 
install a definition. If no definition is installed because autoinstall fails, 
the dynamic routing program is not invoked.

v   The client program names the target region explicitly, by specifying the SYSID 
option on the EXEC CICS LINK command. 

Note:  

1.   If there is no installed definition of the program named on the LINK 
command, the dynamic routing program is invoked but cannot route the 
request, which is shipped to the remote region named on the SYSID option. 

2.   If the SYSID option names the local CICS region, the dynamic routing 
program is able to route the request.

v   DPL calls for the server program are to be routed dynamically. 
If there is no installed definition of the program named on the LINK command, 
the dynamic routing program is invoked and (provided that the SYSID option is 
not specified) can route the request. 

Note: Although in some cases a remote definition of the server program may 
not be necessary, in others a definition will be required—to set the program's 
REMOTENAME or TRANSID attribute, for example. In these cases, you should 
install a definition that specifies DYNAMIC(YES).

Defining remote resources for asynchronous processing 
The only remote resource definitions needed for asynchronous processing are for 
transactions that are named in the TRANSID option of START commands. 

Note, however, that an application can use the CICS RETRIEVE command to 
obtain the name of a remote temporary storage queue which it subsequently 
names in a function shipping request. 

Defining remote transactions 
A remote transaction for CICS asynchronous processing is a transaction that is 
owned by another system and is invoked from the local CICS system only by 
START commands. 

CICS application programs can name a remote system explicitly on START 
commands, by means of the SYSID option. If this is done, there is no need for the 
remote transaction to be defined on the local CICS system. 

More generally, however, applications are designed to start transactions without 
being aware of their location, and in this case an installed transaction definition for 
the transaction must be available. 

Note: If the transaction is owned by another CICS system and may be invoked by 
CICS transaction routing as well as by START commands, you must define the 
transaction for transaction routing.

 

210 CICS TS for z/OS 4.1: Intercommunication Guide



Remote transactions that are invoked only by START commands without the 
SYSID option require only basic information in the installed transaction definition. 
The form of resource definition used for this purpose is shown in Figure 66. 
 

Local queuing (LOCALQ) can be specified for remote transactions that are initiated 
by START requests. For further details, see Chapter 5, “Asynchronous processing,” 
on page 45. 

Restriction on the REMOTENAME option 
Some asynchronous-processing requests are for processes that involve transaction 
routing. 

One example is a START command to attach a remote transaction on a local 
terminal. To support such requests, the value of the REMOTENAME option and 
the transaction name must be the same on the local resource definition of the 
transaction to be started. If they are different, the requested transaction does not 
start, and the message DFHCR4310 is sent to the CSMT transient-data queue in the 
requesting system. 

Defining remote resources for transaction routing 
CICS transactions can be routed to remote regions either statically or dynamically. 

A transaction that is to be routed may be started in a variety of ways. For example: 
v   From a user-terminal. 
v   By a terminal-related ATI request (for example, a terminal-related EXEC CICS 

START command). 
v   By a non-terminal-related ATI request (for example, by a non-terminal-related 

EXEC CICS START command). 
v   If the transaction is associated with a CICS business transaction services (BTS) 

activity, by a BTS RUN ASYNCHRONOUS command. (BTS is described in What 
are CICS business transaction services?, in the CICS Business Transaction Services.)

The resources you need to define are: 
v   If the request to start the transaction is associated with a terminal, the 

terminal—see “Defining terminals for transaction routing” 
v   In every case, the transaction—see “Defining transactions for transaction 

routing” on page 221.

Defining terminals for transaction routing 
Terminal-related transaction routing is the routing of transactions started from 
user-terminals, and transactions started by terminal-related ATI requests. There are 
a number of rules that define whether a terminal is eligible for transaction routing. 

  
DEFINE 
  TRANSACTION(name) 
  GROUP(groupname) 
 Remote attributes 
  REMOTESYSTEM(sysidnt) 
  REMOTENAME(name) 
  LOCALQ(NO|YES) 
 
Figure 66. Defining a remote transaction (asynchronous processing)

 

Chapter 16. Defining remote resources 211



Most of the terminal and session types supported by CICS are eligible for 
transaction routing. However, the following terminals are not eligible, and cannot 
be defined as remote resources: 
v   LUTYPE6.1 connections and sessions 
v   MRO connections and sessions 
v   IBM 7770 or 2260 terminals 
v   Pooled 3600 or 3650 pipeline logical units 
v   MVS system consoles.

Both the terminal and the transaction must be defined in both CICS systems, as 
follows: 
1.   In the terminal-owning region: 

a.   The terminal must be defined as a local resource (or must be 
autoinstallable). 

b.   The transaction must be defined as a remote resource if it is to be initiated 
from a terminal or by ATI.

2.   In the application-owning region: 
a.   The terminal must be defined as a remote resource, unless a shipped 

terminal definition is available; see “Shipping terminal and connection 
definitions” on page 214) for more information. 

b.   The transaction must be defined as a local resource.

If transaction routing requests are to be “daisy-chained” across intermediate 
systems, the same rules apply. In addition, both the terminal and the transaction 
must be defined as remote resources in the intermediate CICS systems. If you are 
using non-VTAM terminals, you also need to define indirect links to the TOR on 
the AOR and the intermediate systems (see “Defining indirect links for transaction 
routing” on page 182). 

Transactions are defined by resource definition online (RDO). 

VTAM terminals are also defined by RDO, but for non-VTAM terminals you must 
use macro-level definition. 

Defining remote VTAM terminals 
Use resource definition online (RDO) to define remote VTAM terminals. 

Instead of defining the terminal on the application-owning region, you can arrange 
for a suitable definition to be shipped from the terminal-owning region when it is 
required. See “Shipping terminal and connection definitions” on page 214 for more 
information on shipping definitions. 

Remote VTAM terminals are defined using the DEFINE TERMINAL command on 
which: 
v   The REMOTESYSNET option specifies the netname (applid) of the TOR. This 

enables CICS to form the fully-qualified identifier of the remote terminal, even 
where there is no direct link to the TOR. (See “Local and remote names for 
terminals” on page 219.) 

v   The REMOTESYSTEM option specifies the name of the next link in the path to 
the TOR. If there is more than one possible path to the TOR, use 
REMOTESYSTEM to specify the next link in the preferred path. 
If REMOTESYSTEM names a direct link to the TOR, normally you do not need 
to specify REMOTESYSNET. However, if the direct link is an APPC connection 

 

212 CICS TS for z/OS 4.1: Intercommunication Guide



to a TOR that is a member of a VTAM generic resource group, you might need 
to specify REMOTESYSNET. REMOTESYSNET is needed in this case if the 
NETNAME specified on the CONNECTION definition is the generic resource 
name of the TOR (not the applid).

Only a few of the various terminal properties need be specified for a remote 
terminal definition. They are: 
 

The TYPETERM referenced by a remote terminal definition can be a CICS-supplied 
version for the particular terminal type, or one defined by a DEFINE TYPETERM 
command. If you are defining a TYPETERM that will be used only for remote 
terminals, you can ignore the session properties, the paging properties, and the 
operational properties. You can also ignore BUILDCHAIN in the application 
features. 

Defining remote APPC connections 
Remote single-session APPC terminals can be defined using the DEFINE TERMINAL 
and DEFINE TYPETERM commands, in the same way as you would define a remote 
VTAM terminal. 

For more information on defining a remote VTAM terminal, see “Defining remote 
VTAM terminals” on page 212. For remote parallel-session APPC systems and 
devices, you must define a remote connection, as shown in Figure 68. A SESSIONS 
definition is not required for a remote connection. 
   

How to share terminal and connection definitions 
In some circumstances, two or more CICS systems can share a common CICS 
system definition (CSD) file. If the local and remote systems share a CSD, define 
each terminal and APPC connection only once. 

Define the terminal using the DEFINE TERMINAL command, and include an 
associated TYPETERM definition, similar to a local terminal definition. You must 
specify other options to ensure that when the terminal is installed on the 

DEFINE 
 TERMINAL(trmidnt) 
 GROUP(groupname) 
Terminal identifiers 
 TYPETERM(terminal-type) 
 NETNAME(netname_of_terminal) 
 REMOTESYSTEM(sysidnt_of_next_system) 
 REMOTESYSNET(netname_of_TOR) 
 REMOTENAME(trmidnt_on_TOR) 
 
Figure 67. Defining a remote VTAM terminal (transaction routing)

DEFINE 
 CONNECTION(sysidnt_of_device) 
 GROUP(groupname) 
Connection identifiers 
 NETNAME(netname_of_device) 
Remote attributes 
 REMOTESYSTEM(sysidnt_of_next_system) 
 REMOTESYSNET(netname_of_TOR) 
 REMOTENAME(sysidnt_of_device_on_TOR) 
Connection properties 
 ACCESSMETHOD(VTAM) 
 PROTOCOL(APPC) 
 
Figure 68. Defining a remote APPC connection (transaction routing)

 

Chapter 16. Defining remote resources 213



terminal-owning region, a full, local terminal definition is built. On any other 
system, a remote terminal definition is built: 
v   Specify the NETNAME of the terminal-owning region in the REMOTESYSNET 

option. 
v   Specify the SYSIDNT of the terminal-owning region in the REMOTESYSTEM 

option.

Similarly, an APPC connection, for example, must be fully defined using the 
DEFINE CONNECTION command, and must have one or more associated SESSIONS 
definitions. Specify the NETNAME of the terminal-owning region in the 
REMOTESYSNET option and the SYSIDNT of the terminal-owning region in the 
REMOTESYSTEM option in the same way as for the terminal definition. When the 
connection is installed on the terminal-owning region, a connection definition is 
built. On any other system, a remote connection definition is built, and the 
SESSIONS definition is ignored. 

The links that you define between systems on the transaction routing path that 
share common terminal or connection definitions must be given the same name. 
That is, the CONNECTION definitions must be given the name that you specify on 
the REMOTESYSTEM option of the common TERMINAL definitions. 

Shipping terminal and connection definitions 
If you are using VTAM terminals on your terminal-owning region, you can arrange 
for a terminal definition to be shipped from the terminal-owning region to the 
application-owning region whenever it is required. If you use this method, you 
need not define the terminal on the application-owning region. 

When a remote transaction is invoked from a shippable terminal, the request that 
is transmitted to the application-owning region is flagged to show that a shippable 
terminal definition is available. If the application-owning region already has a 
valid definition of the terminal (which may have been shipped previously), it 
ignores the flag. Otherwise, it asks for the definition to be shipped. 

Shipped terminal definitions are propagated to the connected CICS system using 
the communication sessions providing the connection. When a terminal definition 
is shipped to another region, the TCTUA is also shipped, except when the 
principal facility is an APPC parallel session. When a routed transaction 
terminates, information from the TCTTE and the TCTUA is communicated back to 
the region that owns the terminal. 

Note: APPC connection definitions and APPC terminal definitions are always 
shippable; no special resource definition is required. 

Terminal definitions can be shipped across intermediate systems. If you use 
shippable terminals and there is more than one possible path from the AOR to the 
TOR, you may want to specify the preferred path by defining indirect links to the 
TOR on the AOR and the intermediate systems (see “Defining indirect links for 
transaction routing” on page 182). 

When a shipped definition is to be installed on an intermediate or 
application-owning region, the autoinstall user program is invoked in that region. 
If the name of the shipped definition clashes with that of a remote terminal or 
connection already installed on the region, CICS assigns an alias to the shipped 
definition, and passes the alias to the autoinstall user program. (Terminal aliases 
are described on page “Terminal aliases” on page 220.) CICS-generated aliases for 
shipped terminals and connections are recognizable by their first character, which 

 

214 CICS TS for z/OS 4.1: Intercommunication Guide



is always '{'. Their remaining three characters can have the values 'AAA' through 
'999'. Your autoinstall user program can accept a CICS-generated alias, override it, 
or reject the install. Note that it can also specify an alias for a shipped definition 
when there is no clash with an installed remote definition. 

You need to consider assigning aliases to shipped definitions if, for example, you 
have two or more terminal-owning regions that use similar sets of terminal 
identifiers for transaction routing to the same AOR. For information about writing 
an autoinstall user program to control the installation of shipped terminals, see 
Writing a program to control autoinstall of shipped terminals , in the CICS 
Customization Guide. 

Shipping terminals for ATI requests:  

If you require a transaction that is started by ATI to acquire a remote terminal, you 
normally statically define the terminal to the AOR and any intermediate systems. 

 You do this because, for example, specifying a remote terminal for an intrapartition 
transient data queue (see “Defining intrapartition transient data queues” on page 
235) does not cause a terminal definition to be shipped from the remote system. 
However, if a shipped terminal definition has already been received, following a 
previous transaction routing request, the terminal is eligible for ATI requests. 

However, if the TOR and AOR are directly connected, CICS does allow you to 
cause terminal definitions to be shipped to the AOR to satisfy ATI requests. If you 
enable the user exit XALTENF in the AOR, CICS invokes this exit whenever it 
meets a “terminal-not-known” condition. The program you code has access to 
parameters, giving details of the origin and nature of the ATI request. You use 
these to decide the identity of the region that owns the terminal definition you 
want CICS to ship for you. A similar user exit, XICTENF, is available for start 
requests that result from EXEC CICS START. 

Remember that XALTENF and XICTENF can be used to ship terminal definitions 
only if there is a direct link between the TOR and the AOR. See “Shipping 
terminals for automatic transaction initiation” on page 71 for more information. 

If you function ship START requests from a terminal-owning region to the 
application-owning region, you may need to consider using the FSSTAFF 
(function-shipped START affinity) system initialization parameter. See “Shipping 
terminals for ATI from multiple TORs” on page 76 for more details. 

A better way of handling terminal-related START requests is to use the enhanced 
routing methods described in “Routing transactions invoked by START 
commands” on page 78. If the START request is issued in the TOR, it is not 
function-shipped to the AOR: thus the “terminal-not-known” cannot occur; nor do 
you need to use FSSTAFF to prevent the transaction being started against the 
“wrong” terminal. Instead, the START executes directly in the TOR, and the 
transaction is routed as if it had been initiated from a terminal. If you are using 
shippable terminals, a terminal definition is shipped to the AOR if required. 

Defining terminals as shippable:  

To make a terminal definition eligible for shipping, you must associate it with a 
TYPETERM that specifies SHIPPABLE(YES). 

  

 

Chapter 16. Defining remote resources 215



This method can be used for any VTAM terminal. It is particularly appropriate if 
you use autoinstall in the TOR. 

Terminal definitions that have been shipped to an application-owning region 
eventually become redundant, and must be deleted from the AOR (and from any 
intermediate systems between the TOR and AOR). For information about this, see 
Chapter 25, “Efficient deletion of shipped terminal definitions,” on page 283. 

Defining remote non-VTAM terminals 
Non-VTAM terminals must be defined using resource definition macros: you 
cannot use RDO. 

Note: CICS Transaction Server for z/OS, Version 4 Release 1 does not directly 
support the Telecommunication Access Method (TCAM). However, TCAM is 
supported indirectly: that is, terminals connected by TCAM/DCB (not 
TCAM/ACB) to a pre-CICS TS for z/OS TOR can use transaction routing to gain 
access to a CICS Transaction Server for z/OS, Version 4 Release 1 AOR. Thus, you 
can define remote (but not local) TCAM terminals to a CICS Transaction Server for 
z/OS, Version 4 Release 1 system. 

CICS Transaction Server for z/OS, Version 4 Release 1 does not support the Basic 
Telecommunication Access Method (BTAM) at all, even indirectly. Thus, you 
cannot define remote BTAM terminals. 

A remote non-VTAM terminal requires a full terminal control table entry in the 
remote system (TOR), and a terminal control table entry in the local system (AOR) 
that contains sufficient information about the terminal to enable CICS to perform 
the transaction routing. Data set control information and line information is not 
required for the definition of a remote terminal. 

Non-VTAM terminal definitions are not shippable. 

Using resource definition macros, you can define remote non-VTAM terminals in 
either of two ways: 
1.   By means of DFHTCT TYPE=REMOTE macros 
2.   By means of normal DFHTCT TYPE=TERMINAL macros preceded by a 

DFHTCT TYPE=REGION macro

Both methods allow the same terminal definitions to be used to generate the 
required entries in both the local and the remote system. 

Definition using DFHTCT TYPE=REMOTE:  

DEFINE 
  TERMINAL(trmidnt) 
  GROUP(groupname) 
  AUTINSTMODEL(YES|NO|ONLY) 
  AUTINSTNAME(name) 
  TYPETERM(TRTERM1) 
  . 
  . 
DEFINE 
  TYPETERM(TRTERM1) 
  . 
  . 
  SHIPPABLE(YES) 
 
Figure 69. Defining a shippable terminal (transaction routing)

 

216 CICS TS for z/OS 4.1: Intercommunication Guide



The format of the DFHTCT TYPE=REMOTE macro is reproduced here for ease of 
reference. 

  

SYSIDNT specifies the name of the connection to the terminal-owning region. If 
there is no direct link to the TOR, SYSIDNT must specify the name of an indirect 
link (see “Defining indirect links for transaction routing” on page 182). 

Sharing terminal definitions:  

This section applies to all supported types of non-VTAM terminals except TCAM. 
CICS Transaction Server for z/OS, Version 4 Release 1 does not support local 
TCAM terminals and therefore no local definitions are built. 

TCAM terminals:  

With the exception of SYSIDNT, the operands of DFHTCT TYPE=REMOTE form a 
subset of those that can be specified with DFHTCT TYPE=TERMINAL. Any of the 
remaining operands can be specified. They are ignored unless the SYSIDNT 
operand names the local system, in which case the macro becomes equivalent to 
the DFHTCT TYPE=TERMINAL form. 

A single DFHTCT TYPE=REMOTE macro can therefore be used to define the same 
terminal in both the local and the remote systems. A typical use of this method of 
definition is shown in Figure 71 on page 218. 
 

DFHTCT   TYPE=REMOTE 
    ,ACCMETH=access-method 
    ,SYSIDNT=name-of-CONNECTION-to-TOR 
    ,TRMIDNT=name 
    ,TRMTYPE=terminal-type 
    [,ALTPGE=(lines,columns)] 
    [,ALTSCRN=(lines,columns)] 
    [,ALTSFX=number] 
    [,DEFSCRN=(lines,columns)] 
    [,ERRATT={NO|([LASTLINE][,INTENSIFY] 
    [,{BLUE|RED|PINK|GREEN|TURQUOISE|YELLOW 
       |NEUTRAL}] 
    [,{BLINK|REVERSE|UNDERLINE}])}] 
    [,FEATURE=(feature[,feature],...)] 
    [,LPLEN={132|value}] 
    [,PGESIZE=(lines,columns)] 
    [,RMTNAME={name-specified-in-TRMIDNT|name}] 
    [,STN2980=number] 
    [,TAB2980={1|value}] 
    [,TCTUAL=number] 
    [,TIOAL={value|(value1,value2)}] 
    [,TRMMODL=numbercharacter] 
    TCAM SNA Only 
    [,BMSFEAT=([FMHPARM][,NOROUTE][,NOROUTEALL] 
        [,OBFMT][,OBOPID])] 
    [,HF={NO|YES}] 
    [,LDC={listname|(aa[=nnn],bb[=nnn],cc[=nnn],...) 
    [,SESTYPE=session-type] 
    [,VF={NO|YES}] 
 
Figure 70. Defining a remote non-VTAM terminal (transaction routing)

 

Chapter 16. Defining remote resources 217



In Figure 71, the same terminal definition is used in both the local and the remote 
systems. 

In the local system, the fact that the terminal sysidnt differs from that of the local 
system (specified on the DFHTCT TYPE=INITIAL macro) causes a remote terminal 
entry to be built. In the remote system, the fact that the terminal sysidnt is that of 
the remote system itself causes the TYPE=REMOTE macro to be treated exactly as 
if it were a TYPE=TERMINAL macro. 

Note: For TCAM terminals, no local terminal definitions are built. 

Note: For this method to work, the CONNECTION from the local system to the 
remote system must be given the name of the sysidnt by which the remote system 
knows itself (CICR in the example). 

The terminal identification is "aaaa" in both systems. 

Definition using DFHTCT TYPE=REGION:  

If you use the DFHTCT TYPE=REGION macro, you can define remote terminals in 
the same way as local terminals, using DFHTCT TYPE=SDSCI, TYPE=LINE, and 
TYPE=TERMINAL macros. 

 The definitions must, however, be preceded by a DFHTCT TYPE=REGION macro, 
which has the following form: 
DFHTCT   TYPE=REGION 
         ,SYSIDNT={name-of-CONNECTION-to-TOR|LOCAL} 

SYSIDNT specifies the name of the connection to the terminal-owning region. If 
there is no direct link to the TOR, SYSIDNT must specify the name of an indirect 
link (see “Defining indirect links for transaction routing” on page 182). 

Sharing terminal definitions:  

If SYSIDNT does not name the local system, only the information required to build 
a remote terminal entry is extracted from the succeeding definitions. DFHTCT 

  Local System CICL                  Remote System CICR 
        AOR                                 TOR 
  
DFHSIT TYPE=                       DFHSIT TYPE= 
       SYSIDNT=CICL                       SYSIDNT=CICR 
  
DFHTCT TYPE=INITIAL,               DFHTCT TYPE=INITIAL, 
       ACCMETH=NONVTAM,                   ACCMETH=NONVTAM, 
       SYSIDNT=CICL,                      SYSIDNT=CICR, 
       .                                  . 
       .                                  . 
  
DFHTCT TYPE=REMOTE,                DFHTCT TYPE=REMOTE, 
       SYSIDNT=CICR                       SYSIDNT=CICR 
       TRMIDNT=aaaa,                      TRMIDNT=aaaa, 
       TRMTYPE=3277,                      TRMTYPE=3277, 
       TRMMODL=2,                         TRMMODL=2, 
       ALTSCRN=(43,80)                    ALTSCRN=(43,80) 
       .                                   . 
       .                                   . 
DFHTCT TYPE=FINAL                  DFHTCT TYPE=FINAL 
 
Figure 71. Typical use of DFHTCT TYPE=REMOTE macro

 

218 CICS TS for z/OS 4.1: Intercommunication Guide



TYPE=SDSCI and TYPE=LINE definitions are ignored. Parameters of 
TYPE=TERMINAL definitions that are not part of the TYPE=REMOTE subset are 
also ignored. 

 A return to local system definitions is made by using DFHTCT 
TYPE=REGION,SYSIDNT=LOCAL. 

A typical use of this method of definition is shown in Figure 72. 
 

In Figure 72, the same copy book of terminal definitions is used in both the 
terminal-owning region and the application-owning region. 

In the terminal-owning region, local terminal entries are built. 

Note: For TCAM terminals, no local terminal definitions are built. 

In the application-owning region, the fact that the sysidnt specified in the 
TYPE=REGION macro differs from the sysidnt specified in the DFHTCT 
TYPE=INITIAL macro causes remote terminal entries to be built. 

Local and remote names for terminals 
CICS uses a unique identifier for every terminal that is involved in transaction 
routing. The identifier is formed from the applid (netname) of the CICS system 
that owns the terminal and the terminal identifier specified in the terminal 
definition on the terminal-owning region. 

If, for example, the applid of the CICS system is PRODSYS and the terminal 
identifier is L77A, the fully-qualified terminal identifier is PRODSYS.L77A. 

The following rules apply to all forms of hard-coded remote terminal definitions: 
v   The definition must enable CICS to access the netname of the terminal-owning 

region. For example, if you are using VTAM terminals and there is no direct link 
to the TOR, you should use the REMOTESYSNET option to provide the netname 
of the TOR. 
If you are using non-VTAM terminals and there is no direct link to the TOR, the 
SYSIDNT operand of the DFHTCT TYPE=REMOTE or TYPE=REGION macro 
must specify the name of an indirect link (on which the NETNAME option 
names the applid of the TOR). 

 Terminal-Owning Region        Application-Owning Region 
  
   DFHTCT TYPE=INITIAL,           DFHTCT TYPE=INITIAL, 
          SYSIDNT=TERM,                  SYSIDNT=TRAN, 
          ACCMETH=NONVTAM                ACCMETH=NONVTAM 
          .                              . 
  
                                  DFHTCT TYPE=REGION, 
                                         SYSIDNT=TERM 
  
   COPY TERMDEFS                  COPY TERMDEFS 
  
                                  DFHTCT TYPE=REGION, 
                                         SYSIDNT=LOCAL 
  
   DFHTCT TYPE=FINAL              DFHTCT TYPE=FINAL 
  
 
Figure 72. Typical use of DFHTCT TYPE=REGION macro

 

Chapter 16. Defining remote resources 219



v   The “real” terminal identifier must always be specified, either directly or by 
means of an alias.

Providing the netname of the TOR:  

You must always ensure that the remote terminal definition allows CICS to access 
the netname of the TOR. 

 In the following examples, it is assumed that the applid of the terminal-owning 
region is PRODSYS. 
 

Terminal aliases:  

The name by which a terminal is known in the application-owning region is 
usually the same as its name in the terminal-owning region. You can, however, 
choose to call the remote terminal by a different name (an alias) in the 
application-owning region. 

 You have to provide an alias if the terminal-owning region and the 
application-owning region each own a terminal with the same name; you cannot 
have a local terminal definition and a remote terminal definition with the same 
name. (Nor can you have two remote terminal definitions (for terminals on 
different remote regions) with the same name.) 

If you use an alias, you must also specify the “real” name of the terminal as its 
remote name, as follows: 
 

VTAM terminal definition 
DEFINE TERMINAL             DEFINE CONNECTION(PD1)     Direct link 
REMOTESYSTEM(PD1)           NETNAME(PRODSYS)           to TOR 
.                           . 
.                           . 
VTAM terminal definition 
DEFINE TERMINAL             DEFINE CONNECTION(NEXT)    No direct 
REMOTESYSTEM(NEXT)          NETNAME(INTER1)            link to TOR 
REMOTESYSNET(PRODSYS) 
.                           . 
.                           . 
Non-VTAM terminal definition (method 1) 
DFHTCT TYPE=REMOTE,        DEFINE CONNECTION(PD1)      Direct link 
SYSIDNT=PD1,               NETNAME(PRODSYS)            to TOR 
.                          . 
.                          . 
Non-VTAM terminal definition (method 2) 
DFHTCT TYPE=REGION,        DEFINE CONNECTION(PD1)      Direct link 
SYSIDNT=PD1                NETNAME(PRODSYS)            to TOR 
.                          . 
.                          . 
Non-VTAM terminal definition (method 1) 
DFHTCT TYPE=REMOTE,        DEFINE CONNECTION(REMT)     No direct 
SYSIDNT=REMT,              NETNAME(PRODSYS)            link to TOR 
                           ACCESSMETHOD(INDIRECT) 
                           INDSYS(NEXT) 
DFHTCT TYPE=TERMINAL, 
. 
 
Figure 73. Identifying a terminal-owning region

 

220 CICS TS for z/OS 4.1: Intercommunication Guide



You specify the remote name in the REMOTENAME option of DEFINE 
TERMINAL or the RMTNAME operand of DFHTCT TYPE=REMOTE. 

Defining transactions for transaction routing 
This section discusses the definition of transactions that may be invoked by 
transaction routing. It applies to all forms of transaction routing. 

The general form of the CEDA DEFINE command for a transaction is shown in 
Figure 75 on page 222. 
 

Local terminal Local terminal

Trmidnt L77A Trmidnt L77A

Remote terminal

Trmidnt R77A

Remote Name L77A

Terminal-owning
region (TOR)

Application-owning
region (AOR)

  

Figure 74. Local and remote names for remote terminals

 

Chapter 16. Defining remote resources 221



The way in which a transaction is selected for local or remote execution is 
determined by the remote attributes that are specified in the transaction definition. 5 

There are three possible cases: 
1.   The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name 

is either blank or the sysid of the local system. 
In this case, the transaction is executed locally, and transaction routing is not 
involved. 

2.   The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name 
differs from the sysid of the local system. 

5. We ignore here the special case of an EXEC CICS START command that uses the SYSID option to name the remote region on 
which the transaction is to run. A remote region named explicitly on a START command takes precedence over one named on the 
transaction definition. 

  DEFINE 
    TRANSACTION(name) 
    GROUP(groupname) 
    PROGRAM(name) 
    TWASIZE(0|value) 
    PROFILE(DFHCICST|name) 
    PARTITIONSET(name) 
    STATUS(ENABLED|DISABLED) 
    PRIMEDSIZE(00000|value) 
    TASKDATALOC(BELOW|ANY) 
    TASKDATAKEY(USER|CICS) 
    STORAGECLEAR(NO|YES) 
    RUNAWAY(SYSTEM|value) 
    SHUTDOWN(DISABLED|ENABLED) 
    ISOLATE(YES|NO) 
REMOTE ATTRIBUTES 
    DYNAMIC(NO|YES) 
    REMOTESYSTEM(name) 
    REMOTENAME(local-name|remote-name) 
    TRPROF(DFHCICSS|name) 
    LOCALQ(NO|YES) 
    ROUTABLE(NO|YES) 
SCHEDULING 
    PRIORITY(1|value) 
    TCLASS(NO|value) 
    TRANCLASS(DFHTLC00|name) 
ALIASES 
    ALIAS(name) 
    TASKREQ(value) 
    XTRANID(value) 
    TPNAME(name) 
    XTPNAME(name) 
RECOVERY 
    DTIMOUT(NO|value) 
    INDOUBT(BACKOUT|COMMIT|WAIT) 
    RESTART(NO|YES) 
    SPURGE(NO|YES) 
    TPURGE(NO|YES) 
    DUMP(YES|NO) 
    TRACE(YES|NO) 
SECURITY 
    RESSEC(NO|YES) 
    CMDSEC(NO|YES) 
    EXTSEC(NO|YES) 
    TRANSEC(01|value) 
    RSL(00|value|Public) 
 
Figure 75. The CEDA DEFINE TRANSACTION options

 

222 CICS TS for z/OS 4.1: Intercommunication Guide



In this case, the transaction is routed to the system named in the 
REMOTESYSTEM option. This is known as static transaction routing. 6 

3.   The remote attributes specify DYNAMIC(YES). 
In this case, the decision about where to execute the transaction is taken by 
your dynamic or distributed routing program. See “Two routing programs” on 
page 63. 

Note: Exceptions to this rule are transactions initiated by EXEC CICS START 
commands that are ineligible for enhanced routing. For example, if one of these 
transactions is defined as DYNAMIC(YES), your dynamic routing program is 
invoked but cannot route the transaction. See “Routing transactions invoked by 
START commands” on page 78.

The name in the TRANSACTION option is the name by which the transaction is 
invoked in the local region. TASKREQ can be specified if special inputs, such as a 
program attention (PA) key, program function (PF) key, light pen, magnetic slot 
reader, or operator ID card reader, are used. 

If there is a possibility that the transaction will be executed locally, the definition 
must follow the normal rules for the definition of a local transaction. In particular, 
the PROGRAM option must name a user program that will be installed in the local 
system. When the transaction is routed to another system, the program associated 
with it is always the relay program DFHAPRT, irrespective of the name specified 
in the PROGRAM option. 

The PROFILE option names the profile that is to be used for communication 
between the terminal and the relay transaction (or the user transaction if the 
transaction is executed locally). For remote execution, the TRPROF option names 
the profile that is to be used for communication on the session between the relay 
transaction and the remote transaction-owning system. Information about profiles 
is given under “Defining communication profiles” on page 229. 

When a transaction will always be routed to a remote system, so that the 
transaction executed in the local system is always the relay transaction, you might 
want to specify some options for control of the relay transaction: 
v   You can set or default TWASIZE to zero, because the relay transaction does not 

require a TWA. 
v   You should specify transaction security for routed transactions that are operator 

initiated. You do not need to specify resource security checking, because the 
relay transaction does not access resources. See Transaction security, in the CICS 
RACF Security Guide for information on security. 

v   For transaction routing on mapped APPC connections or MRO sessions, you 
should code the RTIMOUT option on the communication profile named on the 
TRPROF option of the transaction definition. This causes the relay transaction to 
be timed out if the system to which a transaction is routed does not respond 
within a reasonable time. 
Deadlock time-out (specified on the DTIMOUT option of the transaction 
definition) is not triggered for terminal I/O waits. Because the relay transaction 
does not access resources after obtaining a session, it has little need for 
DTIMOUT except to trap suspended ALLOCATE requests. (Methods for 
specifying whether, if there are no free sessions to a remote system, ALLOCATE 

6. The REMOTESYSTEM option must name a direct link to another system (not an indirect link nor a remote APPC connection). 

 

Chapter 16. Defining remote resources 223



requests should be queued or rejected, are described in Chapter 24, “Intersystem 
session queue management,” on page 279.)

The method you use to define transactions for routing may differ, depending on 
whether the transactions are to be statically or dynamically routed. 

Static transaction routing 
There are two methods of defining transactions that are to be statically routed. 

Using separate local and remote definitions:  

You create a remote definition for the transaction, and install it on the requesting 
region: the REMOTESYSTEM option must specify the name of the target region (or 
the name of an intermediate system, if the request is to be “daisy-chained”). 

 You install separate remote definitions for the transaction on any intermediate 
systems: the REMOTESYSTEM option must specify the name of the next system in 
the routing chain. You create a local definition for the transaction, and install it on 
the target region: the REMOTESYSTEM option must be blank, or specify the name 
of the target region. 

If the transaction may be initiated by an EXEC CICS START command, check 
whether you can use the enhanced routing method described in “Routing 
transactions invoked by START commands” on page 78. If enhanced routing is 
possible, define the transaction as ROUTABLE(YES) in the region in which the 
START will be issued. 

If two or more systems along the transaction-routing path share the same CSD, the 
transaction definitions should be in different groups. 

Using dual-purpose definitions:  

You create a single transaction definition, which is shared between the requesting 
region and the target region (and possibly between intermediate systems too, if 
“daisy chaining” is involved). The REMOTESYSTEM option specifies the name of 
the target region. 

 If the transaction may be initiated by an EXEC CICS START command, check 
whether you can use the enhanced routing method described in “Routing 
transactions invoked by START commands” on page 78. If enhanced routing is 
possible, specify the single definition as ROUTABLE(YES). 

When the definition is installed on each system, the local CICS compares its 
SYSIDNT with the REMOTESYSTEM name. If they are different (as in the 
requesting region), a remote transaction definition is created. If they are the same 
(as in the target region), a local transaction definition is installed. 

It is recommended that, for static transaction routing, you use this method 
wherever possible. Because you have only one set of CSD records to maintain, it 
provides savings in disk storage and time. However, you can use it only if your 
systems share a CSD. For information about sharing a CSD, see Sharing the CSD in 
non-RLS mode, in the CICS System Definition Guide. 

Dynamic transaction routing 
There are three methods of defining transactions that are to be dynamically routed. 

 

224 CICS TS for z/OS 4.1: Intercommunication Guide



Note: Using dual-purpose definitions (on which the REMOTESYSTEM option 
specifies the default target region) is a fourth possible method, but is not 
recommended for transactions that are to be dynamically routed. This is because 
the DYNAMIC(YES) attribute on the shared definition causes the dynamic routing 
program to be invoked unnecessarily in the target region, after the transaction has 
been routed.

Using separate local and remote definitions:  

This is the recommended method for transactions that may be initiated by 
terminal-related EXEC CICS START commands. 

 This method is as described under “Static transaction routing” on page 224. 

For dynamic routing of a transaction initiated by a START command, you must 
define the transaction as ROUTABLE(YES) in the region in which the START 
command is issued. 

Using identical definitions:  

This is the recommended method for the following types of transactions. 
 v   Are associated with CICS business transaction services (BTS) activities 
v   Are associated with method requests for enterprise beans or CORBA stateless 

objects (the request processor transactions specified on the REQUESTMODEL 
definitions) 

v   May be initiated by non-terminal-related START commands.

These types of transactions are routed using the distributed routing model, which 
is a peer-to-peer system—each region can be both a requesting/routing region and 
a target region. Therefore, the transactions should be defined identically in each 
participating region. The regions may or may not be able to share a CSD—see 
Sharing the CSD in non-RLS mode, in the CICS System Definition Guide. 

On each TRANSACTION definition: 
v   Specify DYNAMIC(YES). 
v   Do not specify a value for the REMOTESYSTEM option. 
v   If the transaction may be initiated by a non-terminal-related START command, 

specify ROUTABLE(YES).

Note that the “identical definitions” method differs from the “dual-purpose 
definitions” method in several ways: 
v   It is used for dynamic, not static, routing. 
v   The TRANSACTION definitions do not specify the REMOTESYSTEM option. 
v   The participating regions are not required to share a CSD.

Using a single transaction definition in the TOR:  

This is the recommended method for terminal-initiated transactions. 

 Using it, in the TOR (and in any intermediate systems) you install only one 
transaction definition that specifies DYNAMIC(YES). This single definition 
provides a set of default attributes for all transactions that are dynamically routed. 
The name of the common definition is that specified on the DTRTRAN system 

 

Chapter 16. Defining remote resources 225



initialization parameter. The default name is CRTX, which is the name of a 
CICS-supplied transaction definition that is included in the CSD group DFHISC. 

If, at transaction attach, CICS cannot find an installed resource definition for a user 
transaction identifier (transid), it attaches a transaction built from the user 
transaction identifier and the set of attributes taken from the common transaction 
definition. (If the transaction definition specified on the DTRTRAN parameter is 
not installed, CICS attaches the CICS-supplied transaction CSAC. This sends 
message DFHAC2001—“Transaction 'tranid' is unrecognized”—to the user's 
terminal.) Because the common transaction definition specifies DYNAMIC(YES), 
CICS invokes the dynamic transaction routing program to select a target 
application-owning region and, if necessary, name the remote transaction. 

In the target AOR, you install a local definition for each dynamically-routed 
transaction. 

If you use this method for all your terminal-initiated transactions: 
v   Dynamically-routed transactions should be installed in the terminal-owning 

region (if local to the TOR), or the application-owning region (if local to the 
AOR), but not both. 

v   The only terminal-initiated transaction you should define as dynamic is the 
dynamic transaction routing definition specified on the DTRTRAN parameter. 

v   The only terminal-initiated transactions you should define as remote are those 
that are to be statically routed.

This greatly simplifies the task of managing resource definitions. 

It is recommended that you create your own common transaction definition for 
dynamic routing, using CRTX as a model. The attributes specified on the CRTX 
definition are shown in Figure 76. 
 

The key parameters of this transaction definition are described below: 

DYNAMIC(YES) 
This is required for a dynamic transaction routing definition that is specified 

  DEFINE 
    TRANSACTION(CRTX) 
    GROUP(DFHISC) 
    PROGRAM(########) 
    TWASIZE(00000) 
    PROFILE(DFHCICST) 
    STATUS(ENABLED) 
    TASKDATALOC(ANY) 
    TASKDATAKEY(CICS) 
REMOTE ATTRIBUTES 
    DYNAMIC(YES) 
    REMOTESYSTEM() 
    REMOTENAME() 
    TRPROF(DFHCICSS) 
    ROUTABLE(NO) 
RECOVERY 
    DTIMOUT(NO) 
    INDOUBT(BACKOUT) 
    RESTART(NO) 
    SPURGE(YES) 
    TPURGE(YES) 
 
Figure 76. Main attributes of the CICS-supplied CRTX transaction

 

226 CICS TS for z/OS 4.1: Intercommunication Guide



on the DTRTRAN system initialization parameter. You can change the other 
parameters when creating your own definition, but must specify 
DYNAMIC(YES). 

PROGRAM(########) 
The CICS-supplied default transaction specifies a dummy program name, 
########. If your dynamic transaction routing program allows a transaction to 
run in the local region, and its definition specifies the dummy program name, 
CICS is unlikely to find such a program, causing a “program-not-found” 
condition. 

 You are recommended to specify the name of a program that you want CICS 
to invoke whenever the transaction: 
v   Is not routed to a remote system, and 
v   Is not rejected by the dynamic transaction routing program by means of the 

DYRDTRRJ parameter, and 
v   Is run in the local region.

You can use the local program to issue a suitable response to a user's terminal 
if the dynamic routing program decides it cannot route the transaction to a 
remote system. 

TRANSACTION(CRTX) 
The name of the CICS-supplied dynamic transaction routing definition. Change 
this to specify your own transaction identifier. 

RESTART(NO) 
This attribute is forced for a routed transaction. 

REMOTESYSTEM 
You can code this to specify a default AOR for transactions that are to be 
dynamically routed. 

ROUTABLE(NO) 
This attribute relates to the enhanced routing of transactions initiated by EXEC 
CICS START commands. 

 Specifying ROUTABLE(YES) means that, if the transaction is the subject of an 
eligible START command, it will be routed using the enhanced routing method 
described in “Routing transactions invoked by START commands” on page 78. 
You are recommended to: 
v   Specify ROUTABLE(NO) on the common transaction definition 
v   Install individual definitions of transactions that may be initiated by START 

commands.

By reserving the common definition for use with transactions that are started 
from user-terminals, you prevent transactions that are initiated by 
terminal-related START commands from being dynamically routed “by 
accident”.

Defining remote resources for DTP 
For MRO and LUTYPE6.1 links, there is no need to define any remote resources 
for DTP, provided that the front-end and back-end systems are directly connected. 
Both the remote system and the remote transaction are identified on the EXEC 
CICS commands issued by the front-end transaction. CICS therefore has all the 
necessary information to connect a session and attach the back-end transaction. 

 

Chapter 16. Defining remote resources 227



However, if the back-end transaction is to be routed to, it must be defined as a 
remote resource on the intermediate systems—see “A note on daisy-chaining” on 
page 203. 

If you use the EXEC CICS API over APPC links, you can either identify the remote 
system and transaction explicitly, as for MRO and LUTYPE6.1 links, or by 
reference to a PARTNER definition. If you choose to do the latter, you need to 
create the appropriate PARTNER definitions. If you use the CPI Communications 
API over APPC links, the syntax of the commands requires you to create a 
PARTNER definition for every remote partner referenced. 

Figure 77 shows the general form of the CEDA DEFINE PARTNER command. 
 The PARTNER resource has been designed specifically to support Systems 

Application Architecture (SAA) conventions. For more guidance about this, see 
PARTNER resource definitions, in the CICS Resource Definition Guide and the SAA 
Common Programming Interface Communications Reference manual. 

For guidance about designing and developing distributed transaction processing 
applications, see the CICS Distributed Transaction Programming Guide. 

 DEFINE 
   PARTNER(sym_dest_name) 
   [GROUP(groupname)] 
   [NETWORK(name)] 
   NETNAME(name) 
   [PROFILE(name)] 
   {TPNAME(name)|XTPNAME(value)} 
 
Figure 77. Defining a remote partner

 

228 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 17. Defining local resources 

This chapter discusses how to define resources, required for intersystem 
communication, that reside in the local CICS system. 

The chapter contains the following topics: 
v   “Defining communication profiles” 
v   “Architected processes” on page 232 
v   “Selecting required resource definitions for installation” on page 233 
v   “Defining intrapartition transient data queues” on page 235 
v   “Defining local resources for DPL” on page 236.

Defining communication profiles 
When a transaction acquires a session to another system, either explicitly by means 
of an ALLOCATE command or implicitly because it uses, for example, function 
shipping, a communication profile is associated with the communication between 
the transaction and the session. 

The communication profile specifies the following information: 
v   Whether function management headers (FMHs) received from the session are to 

be passed on to the transaction. 
v   Whether input and output messages are to be journaled, and if so the location of 

the journal. 
v   The node error program (NEP) class for errors on the session. 
v   For APPC sessions, the modename of the group of sessions from which the 

session is to be allocated. (If the profile does not contain a modename, CICS 
selects a session from any available group.)

CICS provides a set of default profiles, described later in this chapter, which it uses 
for various forms of communication. Also, you can define your own profiles, and 
name a profile explicitly on an ALLOCATE command. 

The options of the CEDA DEFINE PROFILE command that are relevant to 
intersystem sessions are shown in Figure 78 on page 230. For further information 
about the CEDA DEFINE PROFILE command, see PROFILE definition attributes, 
in the CICS Resource Definition Guide. 

A profile is always required for a session acquired by an ALLOCATE command; 
either a profile that you have defined and which is named explicitly on the 
command, or the default profile DFHCICSA. If CICS cannot find the profile, the 
CBIDERR condition is raised in the application program. 

The only option shown in Figure 78 on page 230 that applies to MRO sessions is 
INBFMH. And, for MRO sessions that are acquired by an ALLOCATE command, 
CICS always uses INBFMH(ALL), no matter what is specified in the profile. 

For APPC conversations, INBFMH specifications are ignored; APPC FMHs are 
never passed to CICS application programs. 
 

 

© Copyright IBM Corp. 1977, 2011 229



It is usually important to ensure that an intercommunicating transaction never 
waits indefinitely for data from its partner transaction. The RTIMOUT option 
should be given a value suitable for intersystem working: rather less than the 
time-out periods typically specified for terminals used as operator interfaces. The 
RTIMOUT value should also be greater than the DTIMOUT value specified on the 
partner transaction definition. 

Communication profiles for principal facilities 
A profile is also associated with the communication between a transaction and its 
principal facility. You can name the profile in the CEDA DEFINE TRANSACTION 
command, or you can allow the default to be taken. The CEDA DEFINE PROFILE 
command for a principal facility profile has more options than the form required 
for alternate facilities. 

The RTIMOUT value defined for a back-end transaction needs to be at least as 
great as that specified for its front-end partner's principal facility. This is to cover 
the possibility of the back-end transaction waiting almost that period of time (plus 
some execution and network time) to receive data from its front-end. 

Default profiles 
CICS provides a set of communication profiles, which it uses when the user does 
not or cannot specify a profile explicitly. 

DFHCICST  
The default profile for principal facilities. You can specify a different profile for 
a particular transaction by means of the PROFILE option of the CEDA DEFINE 
TRANSACTION command. 

DFHCICSV  
The profile for principal facilities of the CICS-supplied transactions CSNE, 
CSLG, and CSRS. It is the same as DFHCICST, except that DVSUPRT(VTAM) 
is specified in place of DVSUPRT(ALL). 

 You should not modify this profile. 

DFHCICSP  
The profile for principal facilities of the CICS-supplied page-retrieval 
transaction, CSPG. CICS uses this profile for CSPG even if you alter the CSPG 
transaction definition to specify a different one. For further information about 
communication profiles used by CICS-supplied transactions, see CSPG - page 
retrieval, in the CICS Supplied Transactions manual. 

DFHCICSE  
The error profile for principal facilities. CICS uses this profile to pass an error 
message to the principal facility when the required profile cannot be found. 

  DEFINE PROFILE(name) 
     [GROUP(groupname)] 
     [MODENAME(name)] 
     Protocols 
     [INBFMH(NO|ALL)] 
     Journaling 
     [JOURNAL(NO|value)] 
     [MSGJRNL(NO|INPUT|OUTPUT|INOUT)] 
     Recovery 
     [NEPCLASS(0|value)] 
     [RTIMOUT(NO|value)] 
 
Figure 78. Defining a communication profile

 

230 CICS TS for z/OS 4.1: Intercommunication Guide



DFHCICSA INBFMH(ALL)  
The default profile for alternate facilities that are acquired by means of an 
application program ALLOCATE command. A different profile can be named 
explicitly on the ALLOCATE command. 

 This profile is also used as a principal facility profile for some CICS-supplied 
transactions. 

DFHCICSF INBFMH(ALL)  
The profile that CICS uses for the session to the remote system or region when 
a CICS application program issues a function shipping or DPL request. 

 Note that, if you use DPL, you may need to increase the value specified for 
RTIMEOUT—see “Modifying the default profiles.” 

DFHCICSS INBFMH(ALL)  
The profile that CICS uses in transaction routing for communication between 
the relay transaction (running in the terminal-owning region) and the 
interregion link or APPC link. 

DFHCICSR INBFMH(ALL)  
The profile that CICS uses in transaction routing for communication between 
the user transaction (running in the transaction-owning region) and the 
interregion link or APPC link. 

 Note that the user-transaction's principal facility is the surrogate TCTTE in the 
transaction-owning region, for which the default profile is DFHCICST.

Modifying the default profiles 
You can modify a default profile by means of the CEDA transaction. 

A typical reason for modification is to include a modename to provide class of 
service selection for, say, function shipping requests on APPC links. If you do this, 
you must ensure that every APPC link in your installation has a group of sessions 
with the specified modename. 

You must not modify DFHCICSV, which is used exclusively by some 
CICS-supplied transactions. 

You can modify DFHCICSP, used by the CSPG page-retrieval transaction. The 
supplied version of DFHCICSP specifies UCTRAN(YES). Be aware that, if you 
specify UCTRAN(NO), terminals defined with UCTRAN(NO) will be unable to 
make full use of page-retrieval facilities. 

If you modify DFHCICSA, you must retain INBFMH(ALL), because it is required 
by some CICS-supplied transactions. Modifying this profile does not affect the 
profile options assumed for MRO sessions. 

You can modify DFHCICSF, used for function shipping and DPL requests. One 
reason for doing so might be to increase the value of the RTIMEOUT option. For 
example, the default value may be adequate for single function shipping requests, 
but inadequate for a DPL call to a back-end program that retrieves a succession of 
records from a data base. 

 

Chapter 17. Defining local resources 231



Architected processes 
An architected process is an IBM-defined method of allowing dissimilar products 
to exchange intercommunication requests in a way that is understood by both 
products. 

For example, a typical requirement of intersystem communication is that one 
system should be able to schedule a transaction for execution on another system. 
Both CICS and IMS have transaction schedulers, but their implementation differs 
considerably. The intercommunication architecture overcomes this problem by 
defining a model of a “universal” transaction scheduling process. Both products 
implement this architected process, by mapping it to their own internal process, 
and are therefore able to exchange scheduling requests. 

The architected processes implemented by CICS are: 
v   System message model—for handling messages containing various types of 

information that needs to be passed between systems (typically, DFS messages 
from IMS) 

v   Scheduler model—for handling scheduling requests 
v   Queue model—for handling queuing requests (in CICS terms, temporary-storage 

or transient-data requests) 
v   DL/I model—for handling DL/I requests 
v   LU services model—for handling requests between APPC service managers.

Note: With the exception of the APPC LU services model, the architected processes 
are defined in the LUTYPE6.1 architecture. CICS, however, also uses them for 
function shipping on APPC links by using APPC migration mode. 

The appropriate models are also used for CICS-to-CICS communication. The 
exceptions are CICS file control requests, which are handled by a CICS-defined file 
control model, and CICS transaction routing, which uses protocols that are private 
to CICS. 

During resource definition, your only involvement with architected processes is to 
ensure that the relevant transactions and programs are included in your CICS 
system, and possibly to change their priorities. 

Process names 
Architected process names are one through four bytes long, and have a first byte 
value that is less than X'40'. 

In CICS, the names are specified as four-byte hexadecimal transaction identifiers. If 
CICS receives an architected process name that is less than four bytes long, it pads 
the name with null characters (X'00') before searching for the transaction identifier. 

CICS supplies the processes shown in Figure 79 on page 233. 
 

 

232 CICS TS for z/OS 4.1: Intercommunication Guide



Modifying the architected process definitions 
You can modify any of the definitions by means of the CEDA transaction. In 
particular, you may want to change the DTIMOUT value on the mirror 
transactions. 

The previous list shows that the CICS file control model and the architected 
processes for function shipping all map to program DFHMIRS, the CICS mirror 
program. The inclusion of different transaction names for the various models 
enables you to modify some of the transaction attributes. You must not, however, 
change the XTRANID, TRANSID, or PROGRAM values. 

The definitions for the mirror transactions are supplied with DTIMOUT(NO) 
specified. If you are uncomfortable with this situation, you should change the 
definitions to specify a value other than NO on the DTIMOUT option. However, 
before changing these definitions, you first have to copy them to a new group. 

Interregion function shipping 
Function shipping over MRO links can employ long-running mirror tasks and the 
short-path transformer program. 

(See “MRO function shipping” on page 39.) 

If you modify one or more of the mirror transaction definitions, you must evaluate 
the effect that this may have on interregion function shipping. 

The short-path transformer always specifies transaction CSMI. It is not, however, 
used for DL/I requests; they arrive as requests for process X'05000000', 
corresponding to transaction CSM5. 

Selecting required resource definitions for installation 
The profiles and architected processes described in this chapter, and other 
transactions and programs that are required for ISC and MRO, are contained in the 
IBM protected groups DFHISC and DFHSTAND. 

  XTRANID     TRANSID     PROGRAM     DESCRIPTION 
For CICS file control 
     -        CSMI        DFHMIRS     File control model 
  
For LUTYPE6.1 architected processes 
  01000000    CSM1        DFHMIRS     System message model 
  02000000    CSM2        DFHMIRS     Scheduler model 
  03000000    CSM3        DFHMIRS     Queue model 
  05000000    CSM5        DFHMIRS     DL/I model 
  
For APPC architected processes 
  06F10000    CLS1        DFHZLS1     LU services model 
  06F20000    CLS2        DFHLUP      LU services model 
     -        CLS3        DFHLUP      LU services model 
 
Figure 79. CICS architected process names

 

Chapter 17. Defining local resources 233



About this task 

For information about how to include these pregenerated CEDA groups in your 
CICS system, see CICS-supplied resource definitions, groups, and lists, in the CICS 
Resource Definition Guide. 

Some of the contents of groups DFHISC and DFHSTAND are summarized in 
Figure 80. 
   

TRANSACTIONS 
XTRANID   TRANSID   PROGRAM   GROUP 
   -       CSMI     DFHMIRS   DFHISC   CICS file control model 
01000000   CSM1     DFHMIRS   DFHISC   System message model 
02000000   CSM2     DFHMIRS   DFHISC   Scheduler model 
03000000   CSM3     DFHMIRS   DFHISC   Queue model 
05000000   CSM5     DFHMIRS   DFHISC   DL/I model 
06F10000   CLS1     DFHZLS1   DFHISC   LU services model 
06F20000   CLS2     DFHLUP    DFHISC   LU services model 
   -       CLS3     DFHLUP    DFHISC   LU services model 
   -       CEHP     DFHCHS    DFHISC   CICS/VM request handler 
   -       CEHS     DFHCHS    DFHISC   CICS/VM request handler 
   -       CMPX     DFHMXP    DFHISC   Local queue shipper 
   -       CPMI     DFHMIRS   DFHISC   Synclevel 1 mirror 
   -       CRSQ     DFHCRQ    DFHISC   Remote schedule purge program 
   -       CRSR     DFHCRS    DFHISC   Remote scheduler program 
   -       CRTE     DFHRTE    DFHISC   Routing transaction 
   -       CSNC     DFHCRNP   DFHISC   Interregion connection manager 
   -       CSSF     DFHRTC    DFHISC   CRTE cancel command processor 
   -       CVMI     DFHMIRS   DFHISC   APPC sync level-1 mirror 
   -       CXRT     DFHCRT    DFHISC   Relay transaction for LU6.2 
  
PROGRAMS 
NAME      GROUP 
DFHCCNV   DFHISC    CICS data conversion program 
DFHCRNP   DFHISC    Interregion new connection manager 
DFHCRQ    DFHISC    ATI purge program 
DFHCRR    DFHISC    IRC session recovery program 
DFHCRS    DFHISC    Remote scheduler program 
DFHCRSP   DFHISC    Interregion control initialization program 
DFHCRT    DFHISC    Transaction routing relay program for APPC 
                     alternate facilities 
DFHDYP    DFHISC    Standard dynamic transaction routing program 
DFHLUP    DFHISC    LU services program 
DFHMIRS   DFHISC    Mirror program 
DFHMXP    DFHISC    Local queuing shipper program 
DFHRTC    DFHISC    CRTE cancel command processor 
DFHRTE    DFHISC    Transaction routing program 
  
PROFILES 
NAME      GROUP 
DFHCICSF  DFHISC    Function shipping profile 
DFHCICSR  DFHISC    Transaction routing receive profile 
DFHCICSS  DFHISC    Transaction routing send profile 
DFHCICSA  DFHSTAND  Distributed transaction processing profile 
DFHCICSE  DFHSTAND  Principal facility error profile 
DFHCICST  DFHSTAND  Principal facility default profile 
DFHCICSV  DFHSTAND  Principal facility special profile 
 
Figure 80. Some definitions required for ISC and MRO

 

234 CICS TS for z/OS 4.1: Intercommunication Guide



Defining intrapartition transient data queues 
An intrapartition transient data queue can be defined as shown. 

 

For further information about defining transient data queues, see Defining 
TDQUEUE resources, in the CICS Resource Definition Guide. This section is 
concerned with the CICS intercommunication aspects of queues that: 
v   Cause automatic transaction initiation 
v   Specify an associated principal facility (such as a terminal or another system).

Transactions 
A transaction that is initiated by an intrapartition transient data queue must reside 
on the same system as the queue. That is, the transaction that you name in the 
queue definition must not be defined as a remote transaction. 

Principal facilities 
The principal facility that is to be associated with a transaction started by ATI is 
specified in the transient data queue definition. 

A principal facility can be: 
v   A local terminal 
v   A remote terminal 
v   A local session or APPC device 
v   A remote APPC session or device.

Local terminals 
A local terminal is a terminal that is owned by the same system that owns the 
transient data queue and the transaction. 

For any local terminal other than an APPC terminal, you need to specify a 
destination of terminal, and give a terminal identifier. If you omit the terminal 
identifier, the name of the terminal defaults to the name of the queue. 

Remote terminals 
A remote terminal is a terminal that is defined as remote on the system that owns 
the transient data queue and the associated transaction. 

DEFINE 
  TDQUEUE(name) 
  GROUP(groupname) 
  DESCRIPTION(text) 
  TYPE(Intra) 
  Intrapartition Attributes 
  ATIFACILITY(terminal) 
  RECOVSTATUS(logical) 
  FACILITYID (terminal) 
  RECOVSTATUS(name) 
  TRANSID () 
  TRIGGERLEVEL(value) 
  USERID(userid) 
  Indoubt Attributes: 
  WAIT(yes) 
  WAITACTION(reject) 
        ... 
 
Figure 81. Defining an intrapartition transient data queue

 

Chapter 17. Defining local resources 235



Automatic transaction initiation with a remote terminal is a form of CICS 
transaction routing (see Chapter 7, “CICS transaction routing,” on page 65), and 
the normal transaction routing rules apply. 

For any remote terminal other than an APPC terminal, specify a destination of 
terminal and a terminal identifier. 

The terminal itself must be defined as a remote terminal (or a shipped terminal 
definition must be made available), and the terminal-owning region must be 
connected to the local system either by an IRC link or by an APPC link. 

Local sessions and APPC devices 
You can name a local connection definition in the definition for the transient data 
queue. The remote system can be connected by IRC, LUTYPE6.1, or APPC link. In 
the APPC case, “system” can be a hard-coded terminal-like device. 

CICS allocates a session on the specified system, which becomes the principal 
facility to transid. The transaction program converses across the session using the 
appropriate DTP protocol. Read Chapter 9, “Distributed transaction processing,” on 
page 105 for an introduction to DTP. 

The transaction starts in 'allocated' state on its principal facility. Then it identifies 
its partner transaction; that is, the process to be connected to the other end of the 
session. In the APPC protocol, it does this by issuing the EXEC CICS CONNECT 
PROCESS command, a command normally only used to start a conversation on an 
alternate facility. 

The partner transaction, having been started in the back end with the conversation 
in receive state, also sees the session as its principal facility. This is unusual in that 
CICS treats either end of the session as a principal facility. On both sides, the 
conversation identifier is taken from EIBTRMID if needed, but it is also implied on 
later commands, as is the case for principal facilities. 

Remote APPC sessions and devices 
A remote connection is defined as remote on the system that owns the transient 
data queue and the associated transaction. 

Automatic transaction initiation with a remote APPC connection is a form of CICS 
transaction routing (see Chapter 7, “CICS transaction routing,” on page 65), and 
the normal transaction routing rules apply. 

You can name a remote connection in the definition for the transient data queue. 

The connection itself must be defined as a remote connection (or a shipped 
connection definition must be made available), and the terminal-owning region 
must be connected to the local system either by an IRC link or by an APPC link. 
The remarks in “Local sessions and APPC devices” about handling the link after 
transaction initiation apply also to routed transactions. 

Defining local resources for DPL 
To support DPL, special resource definitions are sometimes necessary for server 
programs and mirror transactions. 

 

236 CICS TS for z/OS 4.1: Intercommunication Guide



Mirror transactions 
You can specify whatever names you like for the mirror transactions to be initiated 
by DPL requests. Each of these transaction names must be defined in the server 
region on a transaction that invokes the mirror program DFHMIRS. 

Defining user transactions to invoke the mirror program gives you the freedom to 
specify appropriate values for all the other options on the transaction resource 
definition. 

It is advisable to define the user transaction to execute in the local CICS region, by 
specifying DYNAMIC(NO) and no REMOTE attributes. Routing the mirror 
transaction to another CICS region can impact performance and make problem 
determination more difficult. 

Server programs 
If a local program is to be requested by some other region as a DPL server, there 
must be a resource definition for that program. 

The definition can be statically defined, or installed automatically (autoinstalled) 
when the program is first called. (For details of the CICS autoinstall facility for 
programs, see Autoinstalling programs, map sets, and partition sets, in the CICS 
Resource Definition Guide.) 

 

Chapter 17. Defining local resources 237

|
|
|
|



238 CICS TS for z/OS 4.1: Intercommunication Guide



Part 4. Application programming in an intersystem 
environment 

This part of the manual describes the application programming aspects of CICS 
intercommunication. 

It contains the following chapters: 
v   Chapter 18, “Application programming overview,” on page 241 
v   Chapter 19, “Application programming for CICS function shipping,” on page 243 
v   Chapter 20, “Application programming for CICS DPL,” on page 247 
v   Chapter 21, “Application programming for asynchronous processing,” on page 

251 
v   Chapter 22, “Application programming for CICS transaction routing,” on page 

253 
v   Chapter 23, “CICS-to-IMS applications,” on page 257.

For guidance about application design and programming for distributed 
transaction processing, see the CICS Distributed Transaction Programming Guide. 

This part of the manual documents General-use Programming Interface and 
Associated Guidance Information. 

 

© Copyright IBM Corp. 1977, 2011 239



240 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 18. Application programming overview 

Application programs that are designed to run in the CICS intercommunication 
environment can use one or more of these facilities. 
v   Function shipping 
v   Distributed program link 
v   Asynchronous processing 
v   Transaction routing 
v   Distributed transaction processing. 

The application programming requirements for each of these facilities are described 
separately in the remaining chapters of this part. If your application program uses 
more than one facility, you can use the relevant chapter as an aid to designing the 
corresponding part of the program. Similarly, if your program uses more than one 
intersystem session for distributed transaction processing, it must control each 
individual session according to the rules given for the appropriate session type. 

For guidance about application design and programming for distributed 
transaction processing, see the CICS Distributed Transaction Programming Guide. 

Terminology 
The following terms are sometimes used without further explanation in the 
remaining chapters of this part: 

Principal facility 
This term means the terminal or session that is associated with your 
transaction when the transaction is initiated. CICS commands, such as SEND 
or RECEIVE, that do not explicitly name a facility, are taken to refer to the 
principal facility. Only one principal facility can be owned by a transaction. 

Alternate facility 
In distributed transaction processing, a transaction can acquire the use of a 
session to a remote system. This session is called an alternate facility. It must 
be named explicitly on CICS commands that refer to it. A transaction can own 
more than one alternate facility. 

 Other intersystem sessions, such as those used for function shipping, are not 
owned by the transaction, and are not regarded as alternate facilities of the 
transaction. 

Front-end and back-end transactions 
In distributed transaction processing, a pair of transactions converse with one 
another. The front-end transaction is initiated first, acquires a session to the 
remote system, and causes the back-end transaction to be initiated. 

 Note that a transaction can at the same time be the back-end transaction on 
one conversation and the front-end transaction on one or more other 
conversations.

Problem determination 
Application programs that make use of CICS intercommunication facilities are 
liable to be subject to error conditions not experienced in single-CICS systems. 

 

© Copyright IBM Corp. 1977, 2011 241



Where the resource is remote, the function manager is also remote, so the 
transaction abend is suffered by the remote transaction. This in turn causes the 
local transaction to be abended with a transaction abend code of ATNI (for 
communication through VTAM) or AZI6 (for communication through MRO) rather 
than the particular code used in abending the remote transaction. However, the 
remote system sends the local CICS system an error message identifying the reason 
for the remote failure. This message is sent to the local CSMT destination. 
Therefore, if an application program uses HANDLE ABEND to continue processing 
when abends occur while accessing resources, it is unable to do so in the same 
way when those resources are remote. 

Trace and dump facilities are defined in both local and remote CICS systems. 
When the remote transaction is abended, its CICS transaction dump is available at 
the remote site to assist in locating the reason for an abend condition. 

Applications to be used in conjunction with remote systems should be well tested 
to minimize the possibility of failing when accessing remote resources. It should be 
remembered that a “remote test system” can reside in the same processor as the 
local system and so be tested in a single location where the transaction dumps 
from both systems, and the corresponding trace data, are readily available. The 
two transactions can be connected through MRO or through the VTAM 
application-to-application facility. 

Detailed sequences and request formats for diagnosis of problems with CICS 
intercommunication can be found in the CICS Problem Determination Guide. 

 

242 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 19. Application programming for CICS function 
shipping 

This chapter contains the following topics: 
v   “Introduction to programming for function shipping” 
v   “File control” 
v   “DL/I” on page 244 
v   “Temporary storage” on page 244 
v   “Transient data” on page 244 
v   “Function shipping exceptional conditions” on page 244.

Introduction to programming for function shipping 
If you are writing a program to access resources in a remote system, you code it in 
much the same way as if the resources were on the local system. Function shipping 
is available by using EXEC CICS commands, DL/I calls or EXEC DLI commands. 

The commands that you can use to access remote resources are: 
v   File control commands 
v   DL/I calls or EXEC DLI commands 
v   Temporary storage commands 
v   Transient data commands.

For information about interval control commands, see Chapter 21, “Application 
programming for asynchronous processing,” on page 251. 

Your application can run in the CICS intercommunication environment and make 
use of the intercommunication facilities without being aware of the location of the 
resource being accessed. The location of the resource is specified in the resource 
definition. Optionally, you can use the SYSID option on EXEC commands to select 
the system on which the command is to be executed. In this case, the resource 
definitions on the local system are not referenced, unless the SYSID option names 
the local system. 

When your application issues a command against a remote resource, CICS ships 
the request to the remote system, where a mirror transaction is initiated. The 
mirror transaction executes the request on your behalf, and returns any output to 
your application program. The mirror transaction is like a remote extension of your 
application program. For more information about this mechanism, read Chapter 4, 
“CICS function shipping,” on page 33. 

Although the same commands are used to access both local and remote resources, 
there are restrictions that apply when the resource is remote. Also, some errors that 
do not occur in single systems can arise when function shipping is being used. For 
these reasons, you should always know whether resources that your program 
accesses can possibly be remote. 

File control 
Function shipping allows you to access files located on a remote system. 

 

© Copyright IBM Corp. 1977, 2011 243



If you use the SYSID option to access a remote system directly, you must observe 
the following two rules: 
1.   For a file referencing a keyed data set, KEYLENGTH must be specified if 

RIDFLD is specified, unless you are using relative byte addresses (RBA) or 
relative record numbers (RRN). 
For a remote BDAM file, where the DEBKEY or DEBREC options have been 
specified, KEYLENGTH must be the total length of the key. 

2.   If the file has fixed-length records, you must specify the record length 
(LENGTH).

These rules also apply if the definition of the file to this CICS does not specify the 
appropriate values. 

DL/I 
You can use function shipping to access an IMS Database Manager subsystem that 
is associated with a remote CICS system, or a database associated with a remote 
CICS Transaction Server for VSE system. 

For guidance about restrictions, see CICS IMS Database Control Guide. 

Temporary storage 
Function shipping allows you to send data to or receive data from 
temporary-storage queues located on remote systems. Definitions of remote 
temporary-storage queues can be made by the system programmer. You can, 
however, use the SYSID option on the WRITEQ TS, READQ TS, and DELETEQ TS 
commands to specify the system on which the request is to be executed. 

For MRO sessions, the MAIN and AUXILIARY options of the WRITEQ TS 
command can be used to select the required type of storage. 

For APPC sessions, the MAIN and AUXILIARY options are ignored; auxiliary 
storage is always used in the remote system. 

Transient data 
Function shipping allows you to access intrapartition or extrapartition transient 
data queues located on remote systems. Definitions of remote transient data queues 
can be made by the system programmer. You can, however, use the SYSID option 
on the WRITEQ TD, READQ TD, and DELETEQ TD commands to specify the 
system on which the request is to be executed. 

If the remote transient data queue has fixed-length records, you must supply the 
record length if it is not specified in the transient data resource definition that has 
been installed. 

Function shipping exceptional conditions 
Requests that are shipped to a remote system can raise any of the exceptional 
conditions for the command that can occur if the resource is local. 

In addition, there are some conditions that apply only when the resource is remote. 

 

244 CICS TS for z/OS 4.1: Intercommunication Guide



Remote system not available 
The SYSIDERR condition is raised in the application program under certain 
situations. 
v   These are the following situations: 
v   The link to the remote system is out of service. 
v   The named system is not defined. This error should not occur in a production 

system unless the application is designed to obtain the name of the remote 
system from a terminal operator. 

v   The link to the remote system is busy, and the maximum number of queued 
requests specified on the QUEUELIMIT option of the CONNECTION definition 
has been reached. 

v   The link to the remote system is busy, the maximum number of queued requests 
has not been reached, but your XZIQUE or XISCONA global user exit program 
specifies that the request should not be queued. For programming information 
about the XZIQUE and XISCONA exits, see the CICS Customization Guide.

The default action for the SYSIDERR condition is to terminate the task abnormally. 

Invalid request 
The ISCINVREQ condition occurs when the remote system indicates a failure that 
does not correspond to a known condition. The default action is to terminate the 
task abnormally. 

Mirror transaction abend 
An application request against a remote resource can cause an abend in the mirror 
transaction in the remote CICS. For example, a deadlock timeout causes the mirror 
to be abended with a code of ATSC. 

In these situations, the application program also abends, but with an abend code of 
AIPM for IPIC connections, ATNI for ISC connections, or AZI6 for MRO 
connections. The error condition is logged by CICS in an error message sent to the 
CSMT destination. Any HANDLE ABEND command issued by the application 
cannot identify the original cause of the condition and take explicit corrective 
action. Corrective action might have been possible if the resource had been local. 
An exception occurs in MRO function shipping if the mirror transaction abends 
with a DL/I program isolation deadlock; in this case, the application abends with 
the normal deadlock abend code (ADCD). 

Note that the ATNI abend caused by a mirror transaction abend is not related to a 
terminal control command, and the TERMERR condition is therefore not raised. 

 

Chapter 19. Application programming for CICS function shipping 245

|



246 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 20. Application programming for CICS DPL 

This chapter contains the following topics: 
v   “Introduction to DPL programming” 
v   “The client program” 
v   “The server program” on page 248 
v   “DPL exceptional conditions” on page 248.

Introduction to DPL programming 
CICS distributed program link (DPL) allows you to link to server programs located 
on a remote system. 

A client program running in a CICS Transaction Server for z/OS region can link to 
one or more server programs running in remote CICS regions. The remote regions 
may or may not be CICS Transaction Server for z/OS systems. See Chapter 1, 
“Introduction to CICS intercommunication,” on page 3 for a list of systems with 
which CICS Transaction Server for z/OS can communicate. 

DPL programs can be written in PL/I, C, COBOL, or assembler language. 

As Chapter 8, “CICS distributed program link,” on page 95 indicates, there are two 
sides (programs) involved in DPL: the client program and the server program. To 
implement DPL, there are actions that each program must take. These actions are 
described below. 

The client program 
If you are writing a client program to link to a server program in a remote system, 
you code it in much the same way as if the server program were on the local 
system. 

Your client program can run in the CICS intercommunication environment and 
make use of intercommunication facilities without being aware of the location of 
the server program being linked to. The location of the server program is specified 
by the program resource definition or the dynamic routing program. Optionally, 
you can use the SYSID option on the LINK command to select the system on 
which the command is to be executed. 

When your client program issues a LINK command against a server program, 
CICS ships the request to the remote system, where a mirror transaction is 
initiated. The mirror transaction executes the LINK request on your behalf, thereby 
causing the server program to run. When the server program issues a RETURN 
command, the mirror transaction returns any communication area data to your 
client program. The mirror transaction is like a remote extension of your 
application program. For more information about this mechanism, read Chapter 8, 
“CICS distributed program link,” on page 95. 

Although the same command is used to access both local and remote server 
programs, there are restrictions that apply when the server program is remote. 
Also, some errors that do not occur in single systems can arise when DPL is being 
used. For these reasons, you should always find out whether the server program to 

 

© Copyright IBM Corp. 1977, 2011 247



which your client program links is remote. If there is any possibility of the server 
program being remote, the client program should include the additional checks for 
the exception conditions that can be returned by a remote server program. 

Failure of the server program 
If the server program fails, the ABEND condition and an abend code are returned 
to the client program. The client program therefore also terminates abnormally, 
unless it has issued the HANDLE ABEND command before issuing the LINK 
command. 

The server program 

Permitted commands 
The EXEC CICS commands that a DPL server program can issue are limited to a 
subset of the CICS API. 

For details of the restricted DPL subset, see the CICS Application Programming 
Reference. 

Syncpoints 
If the server program was started by a LINK command that specified the 
SYNCONRETURN option, it is able to issue a syncpoint. 

If it does, this does not commit changes made by the client program. For changes 
to be committed across the distributed unit of work, the client program must issue 
the syncpoint. The client program can also backout changes across the distributed 
unit of work, provided that the server program has not already committed its 
changes. 

The server program can find out how it was started, and therefore whether it is 
allowed to issue independent syncpoint requests, by issuing the ASSIGN 
STARTCODE command. This command returns the following values relevant to a 
DPL server program: 
v   'D' if the program was started by a LINK request without the 

SYNCONRETURN option, and cannot therefore issue SYNCPOINT requests. 
v   'DS' if the program was started by a LINK request with the SYNCONRETURN 

option, and can therefore issue SYNCPOINT requests. However, the server 
program need not issue a syncpoint request explicitly, because CICS takes a 
syncpoint as soon as the server program issues the RETURN command. 

v   Values other than 'D' and 'DS' if the program was not started by a remote LINK 
request.

DPL exceptional conditions 
LINK requests that are shipped to a remote system can raise any of the exceptional 
conditions for the command that can occur if the server program is local. 

In addition, there are some conditions that apply only when the server program is 
remote. 

 

248 CICS TS for z/OS 4.1: Intercommunication Guide



Remote system not available 

When the remote system is unavailable, the SYSIDERR condition can be raised in 
the client program for exactly the same reasons as described for function shipping 
on page “Remote system not available” on page 245. 

The default action for the SYSIDERR condition is to terminate the task abnormally. 

Server's work backed out 
If the client program issues the LINK command with the SYNCONRETURN 
option, the mirror program issues a syncpoint as soon as the server program 
terminates successfully. 

It is possible for this syncpoint to fail. If this happens, the ROLLEDBACK 
condition is returned to the client program. The work done by the server program 
will also be backed out, unless the server program has already committed the work by 
issuing its own syncpoint request. 

Multiple links to the same server region 
When a client program issues a LINK command with the SYNCONRETURN 
option, the mirror transaction terminates as soon as control is returned to the client 
program. It is therefore possible for the client program to issue a subsequent LINK 
command to the same server region. 

However, when a client program issues a LINK command without the 
SYNCONRETURN option, the mirror transaction is suspended pending a 
syncpoint request from the client region. The client program can issue subsequent 
LINK commands to the same server region as long as the SYNCONRETURN 
option is omitted and the TRANSID value is not changed. A subsequent LINK 
command with the SYNCONRETURN option or with a different TRANSID value 
will be unsuccessful unless it is preceded by a SYNCPOINT command. 

Note: Similar considerations apply if the client program sends function shipping 
requests to the server region, and the mirror for the function shipping request is 
suspended. For example: 
EXEC CICS LINK PROGRAM(’PGA’) SYSID(SERV) 
EXEC CICS SYNCPOINT 
EXEC CICS READQ TS QUEUE(’RQUEUE’) SYSID(SERV) 
EXEC CICS LINK PROGRAM(’PGB’) SYSID(SERV) TRANSID(TRN1) 

The last LINK command fails if, for example, MROLRM=YES is specified in the 
CICS server region (SERV). This is because the mirror used for the READQ TS 
command is still around. For the above sequence of commands to work, the client 
program must issue a SYNCPOINT after the READQ TS command; alternatively, 
you could set the MROLRM system initialization parameter to 'NO' in the server 
region. For detailed information about using DPL and function shipping requests 
in the same program, see Mixing DPL and function shipping to the same CICS 
system, in the CICS Application Programming Guide. 

These errors are indicated by the INVREQ and PGMIDERR conditions. 

On the INVREQ condition, an accompanying RESP2 value of 14 indicates that a 
syncpoint is necessary before the failed LINK command can be successfully 
attempted. A RESP2 value of 15 indicates that the TRANSID value is different from 
that of the linked mirror transaction. A RESP2 value of 16 indicates that a 

 

Chapter 20. Application programming for CICS DPL 249



TRANSID value of spaces (blanks) was specified on the LINK command. A RESP2 
value of 17 indicates that a TRANSID value of spaces (blanks) was supplied by the 
dynamic routing program. 

On the PGMIDERR condition, an accompanying RESP2 value of 25 indicates that 
the dynamic routing program rejected the link request. 

Mirror transaction abend 
If the mirror program (as opposed to the server program) abends or the session 
with the server region fails, the TERMERR condition is returned to the client 
program. 

Multiple updates to a recoverable resource by the same 
distributed UOW 

In a non-DPL environment, it is possible for multiple programs within one unit of 
work (UOW) to update the same recoverable resource. 

For instance, program1 might update Record1 in a recoverable file, then link to 
program2, which could update the same record, Record1, in the same file. This is 
not necessarily good programming practice but it does work, because CICS 
considers the owner of the resource to be the task, not the program. 

However, in a DPL environment, where the programs involved are running in 
different CICS regions, it is not possible for multiple programs to update the same 
recoverable resource within the same UOW. Using the same example as above, 
program1 updates Record1 in a recoverable file, then links to program2, which runs 
under a mirror task in another region. If program2 function-ships a file control 
request to update Record1 in the same file, the request hangs. It hangs because the 
mirror task processing program2's file control request cannot get the record lock for 
Record1. The lock is owned by the task under which program1 is running. Even 
though the file control mirror task and the task under which program1 is running 
are part of the same distributed UOW, CICS does not allow the update. This is 
because CICS uses the task, not the distributed UOW, as the basis for locking 
recoverable resources. 

 

250 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 21. Application programming for asynchronous 
processing 

This chapter discusses the application programming requirements for CICS-to-CICS 
asynchronous processing. 

The general information given for CICS transactions that use the START or 
RETRIEVE commands is also applicable to CICS-to-IMS communication. 

A description of the concepts of asynchronous processing is given in Chapter 5, 
“Asynchronous processing,” on page 45. It is assumed that you are familiar with 
the concepts of CICS interval control. For programming information about the use 
of EXEC CICS commands for interval control, see START, in the CICS Application 
Programming Reference. 

Starting a transaction on a remote system 
You can start a transaction on a remote system by issuing an EXEC CICS START 
command just as though the transaction were a local one. 

About this task 

Generally, the transaction has been defined as remote by the system programmer. 
You can, however, name a remote system explicitly in the SYSID option. This use 
of the START command is thus essentially a special case of CICS function 
shipping. 

If your application requires you to specify the time at which the remote transaction 
is to be initiated, remember that the remote system may be in a different time 
zone. The use of the INTERVAL form of control is preferable under these 
circumstances. 

Exceptional conditions for the START command 
The exceptional conditions that can occur as a result of issuing a START request for 
a remote transaction depend on whether or not the NOCHECK performance 
option is specified on the START command. 

If NOCHECK is not specified, the raising of conditions follows the normal rules 
for function shipping (see “Function shipping exceptional conditions” on page 
244). 

If NOCHECK is specified, no conditions are raised as a result of the remote 
execution of the START command. SYSIDERR, however, still occurs if no link to 
the remote system is available, unless the system programmer has arranged for 
local queuing of start requests (see “Local queuing of START commands” on page 
51). 

 

© Copyright IBM Corp. 1977, 2011 251



Retrieving data associated with a remotely-issued start request 
The RETRIEVE command is used to retrieve data that has been stored for a task as 
a result of a remotely-issued start request. This is the only available method for 
accessing such data. 

About this task 

As far as your transaction is concerned, there is no distinction between data stored 
by a remote start request and data stored by a local start request, and the normal 
considerations for use of the RETRIEVE command apply. 

 

252 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 22. Application programming for CICS transaction 
routing 

In general, if you are writing a transaction that may be used in a transaction 
routing environment, you can design and code it just as you would for a single 
CICS system. 

There are, however, a number of restrictions that you must be aware of, and these 
are described in this chapter. The same considerations apply if you are migrating 
an existing transaction to the transaction routing environment. 

Application programming restrictions 
There are a number of restrictions and considerations when you write application 
programs for transaction routing. 

The program can be written in PL/I, COBOL, C, or assembler language. This 
choice might, of course, be restricted by the terminal or session type: basic APPC 
conversations, for example, must be written in C or assembler language. 

Basic mapping support 
Any BMS maps or partition sets that your program uses must reside in the same 
CICS system as the program. 

In a BMS routing application, a route request that specifies an operator or an 
operator class directs output only to the operators signed on at terminals that are 
owned by the system in which the transaction is executing. 

The mapset name specified in the most recent SEND MAP command is saved in 
the TCTTE. For a routed transaction, this means that the mapset name is saved in 
the surrogate TCTTE and, when the routed transaction terminates, the most 
recently used mapset name is passed in a DETACH sequence from the AOR to the 
TOR. 

Similarly, when a routed transaction is initiated, the most recently used mapset 
name is passed in an ATTACH sequence from the TOR to the AOR. 

The map name is supported in the same way as the mapset name. However, some 
old CICS products (no longer supported) have no knowledge of map names being 
passed in ATTACH and DETACH sequences. When sending an ATTACH sequence, 
CICS Transaction Server for z/OS systems set the map name to null values in the 
“real” TCTTE, in case the AOR is unable to return a map name in the DETACH 
sequence. In other words, the TCTTE in the TOR contains a null value for the 
saved map name, rather than a potentially incorrect name. 

The names of mapsets and maps saved in the TCTTE can be both queried and 
updated by the MAPNAME and MAPSETNAME options of the INQUIRE 
TERMINAL and SET TERMINAL commands. For details of these options, see the 
CICS System Programming Reference manual. 

 

© Copyright IBM Corp. 1977, 2011 253



Pseudoconversational transactions 
A routed transaction requires the use of an interregion or intersystem (APPC) 
session for as long as it is running. For this reason, long-running conversational 
transactions are best duplicated in the two systems, or alternatively designed as 
pseudoconversational transactions. 

Take care in the naming and definition of the individual transactions that make up 
a pseudoconversational transaction, because a TRANSID specified in a CICS 
RETURN command is returned to the terminal-owning region, where it may be a 
local transaction. 

There is, however, no reason why a pseudoconversational transaction cannot be 
made up of both local and remote transactions. 

The terminal 
The “terminal” with which your transaction runs is represented by a terminal 
control table terminal entry (TCTTE). 

This TCTTE, called a surrogate TCTTE, is in many respects a copy of the “real” 
terminal's TCTTE in the terminal-owning region. CICS releases the surrogate 
TCTTE when the transaction terminates. Subsequent tasks run using new copies of 
the real terminal's TCTTE. 

If your program needs to discover terminal-related information, consider the 
following points: 
v   Your program should not test fields in the TCTTE directly: it should test instead 

the equivalent fields in the EXEC interface block (EIB). 
v   If the new task is started by ATI, the contents of certain terminal-related fields in 

the EIB are unpredictable. EIBAID, which contains the attention identifier, is 
always set to zeros at the start of a session.

Reviewing values returned by the EXEC CICS ASSIGN command in the 
application-owning region 

Review the values returned by the PRINSYSID and USERID options when you use 
the EXEC CICS ASSIGN command, because the values are taken from a number of 
sources. 

PRINSYSID  
This option returns the system identifier (SYSID) of the principal facility to the 
transaction. The value returned is the name of the remote connection or 
terminal defined in this system. If the connection or terminal has been shipped, 
the name is the original name defined in the terminal-owning region (TOR). If 
the principal facility is not an APPC session, the INVREQ condition is issued. 

USERID  
For a routed transaction, CICS takes the user ID from one of several sources, 
depending on how you specified your security requirements. For more 
information, see Transaction routing security with LU6.2the CICS RACF 
Security Guide. 

 Table 16 on page 255 explains the value that is returned by the USERID option. 
Here are the values: 

 

254 CICS TS for z/OS 4.1: Intercommunication Guide



v   If the connection is defined with the ATTACHSEC(LOCAL) option, and 
SEC=YES or MIGRATE is specified in the system initialization parameters of 
the application-owning region (AOR), CICS returns a different value 
depending on the connection type: 
–   For ISC over SNA and IPIC connections, the value returned is either the 

USERID attribute, if this attribute is specified in the SESSIONS definition, 
or the value of the SECURITYNAME attribute that is specified in the 
CONNECTION definition. 

–   For MRO connections, the RACF user ID of the TOR.
v   If the connection is defined with the ATTACHSEC(LOCAL) option, and 

SEC=NO is specified in the system initialization parameters of the AOR, 
CICS returns the DFLTUSER value from the AOR. 

v   If the connection is defined with the ATTACHSEC(IDENTIFY) option or, for 
APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option, and 
SEC=YES or MIGRATE is specified in the system initialization parameters of 
the TOR, CICS returns the user ID sent at attach time. 

v   If the connection is defined with the ATTACHSEC(IDENTIFY) option, or, for 
APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option, and 
SEC=NO is specified in the system initialization parameters of the TOR, 
CICS returns the DFLTUSER value from the TOR.

 Table 16. Values returned by the USERID option of EXEC CICS ASSIGN, for routed 
transactions 

System 
initialization 

parameter 
SEC= value 

in TOR 

ATTACHSEC value in CONNECTION definition 

 IDENTIFY 
VERIFY 

PERSISTENT 
MIXIDPE 

LOCAL 

System initialization 
parameter SEC=YES or 

MIGRATE value in 
AOR 

System initialization 
parameter SEC=NO 

value in AOR 

 YES 
or 
MIGRATE 

User ID sent at attach 

 ISC over SNA and 
IPIC: 

1.   USERID of session 

2.   SECURITYNAME of 
connection

 MRO: RACF user ID 
of TOR 

DFLTUSER of AOR 

NO 
User ID sent at attach 
(DFLTUSER of TOR)

 

 

Chapter 22. Application programming for CICS transaction routing 255

|
|
|
|



256 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 23. CICS-to-IMS applications 

This chapter tells you how to code CICS transactions that communicate with an 
IMS system. 

For full details of IMS ISC, refer to the appropriate IMS publications. This chapter 
is intended to provide sufficient information about IMS to enable you to work with 
your IMS counterpart to implement a CICS-to-IMS ISC application. 

The chapter contains the following topics: 
v   “Designing CICS-to-IMS ISC applications” 
v   “CICS-to-IMS applications—asynchronous processing” on page 259 
v   “CICS-to-IMS applications—DTP” on page 264.

Designing CICS-to-IMS ISC applications 
There are many differences between CICS and IMS, both in their architecture and 
in their application and system programming requirements. 

The design of CICS-to-IMS ISC applications involves principally CICS application 
programming and IMS system definition. This difference reflects where the control 
lies in each of the two systems. 

CICS is a direct control system. Data entered at a terminal causes CICS to invoke 
the appropriate application program to process the incoming data. The data is 
stored, rather than queued, and the application “owns” the terminal until it 
completes its processing and terminates. In CICS ISC, the application program is 
involved with data flow protocols, with syncpointing, and, in general, with most 
system services. 

In contrast, IMS is a queued system. All input and output messages are queued by 
the IMS control region on behalf of the related application programs and terminals. 
The queuing of messages and the processing of messages are therefore performed 
asynchronously. This is illustrated in Figure 82 on page 258. 

As a result of this type of system design, IMS application programs do not have 
direct control over IMS system resources, nor do they become directly involved in 
the control of intersystem communication. IMS message switching is handled 
entirely in the IMS control region; the message processing region is not involved. 

Data formats 
Messages transmitted between CICS and IMS can have either of the following data 
formats. 
v   Variable-length variable-blocked (VLVB) 
v   Chain of RUs.

 

 

© Copyright IBM Corp. 1977, 2011 257



In normal CICS communication with logical units, chain of RUs is the default data 
format. In IMS, VLVB is the default. In CICS-to-IMS communication, the format 
that is being used is specified in the LUTYPE6.1 attach headers that are sent with 
the initial data. 

Variable-length variable-blocked 
In VLVB format, a message can contain multiple records. 

Each record is prefixed by a two-byte length field, as shown here. 
 

In CICS, the I/O area contains a complete message, which can contain one or more 
records. The blocking of records for output, and the deblocking on input, must be 
done by your CICS application program. 

Chain of RUs 
In this format, which is the most common CICS format, a message is transmitted 
as multiple SNA RUs, as shown here. 

 

 In CICS, the I/O area contains a complete message. 

Control Message
Region Processing

Region

TRAN CODE message
SESSIONS processing

message program
EDIT

LTERM NAME

message

MESSAGE
QUEUES

  

 
Figure 82. Basic IMS message queuing

LL data LL data

record 1 record 2

  

data

multiple SNA RUs

  

 

258 CICS TS for z/OS 4.1: Intercommunication Guide



Forms of intersystem communication with IMS 
In any particular application that involves communication between CICS and IMS, 
the intersystem communication must be initiated by one or other of the two 
systems. For example, if a CICS terminal operator initiates a CICS transaction that 
is designed to obtain data from a remote IMS system, the intersystem 
communication for the purposes of this application is initiated by CICS. 

There are three forms of CICS-to-IMS communication that must be considered: 
1.   Asynchronous processing using CICS START and RETRIEVE commands 
2.   Asynchronous processing using CICS SEND LAST and RECEIVE commands 
3.   Distributed transaction processing (that is, synchronous processing) using CICS 

SEND and RECEIVE commands.

The basic differences between these forms of communication are described in 
Chapter 5, “Asynchronous processing,” on page 45 and Chapter 9, “Distributed 
transaction processing,” on page 105. 

The system that initiates intersystem communication for any particular application 
is the front-end system as far as that application is concerned. The other system is 
called the back-end system. 

When CICS is the front end, it supports all three types of intersystem 
communication listed above. The form of communication that can be used for any 
particular application depends on the IMS transaction type or on the IMS facility 
that is being initiated. For information about the forms of communication that IMS 
supports when it is the back-end system, see the IMS Programming Guide for Remote 
SNA Systems. 

When IMS is the front-end system, it always uses asynchronous processing 
(corresponding to the CICS START and RETRIEVE interface) to initiate 
communication with CICS. 

CICS-to-IMS applications—asynchronous processing 
In asynchronous processing, the intersystem session is used only to pass an 
initiation request, together with various items of data, from one system to the 
other. All other processing is independent of the session that is used to pass the 
request. 

The two application programming interfaces available in CICS for asynchronous 
processing are: 
1.   The START and RETRIEVE interface 
2.   The SEND and RECEIVE interface.

The START and RETRIEVE interface 
The applicable forms of these commands, together with the specific meanings of 
the command options in a CICS-to-IMS intersystem communication environment, 
are given in this section. 

For programming information about the CICS START and RETRIEVE “interval 
control” commands, see , in the CICS Application Programming Reference. 

 

Chapter 23. CICS-to-IMS applications 259



CICS front end 
When CICS is the front-end system, you can use CICS START and RETRIEVE 
commands to process IMS nonresponse mode and nonconversational transactions, 
message switches, and the IMS /DIS, /RDIS, and /FOR operator commands. 

Note: When you issue the operator commands mentioned above, unless you send 
change direction (CD), IMS expects you to request definite response. You must do 
this by coding the PROTECT option on the START command. 

The general command sequence for your application program is shown in 
Figure 83. 

After transaction TRANA has obtained an input message from the terminal, it 
issues a START NOCHECK command to initiate the remote IMS transaction. The 
START command specifies the name of the IMS editor that is to be initiated to 
process the message and the IMS transaction or logical terminal (LTERM) that is to 
receive the message. It also specifies the name of the CICS transaction that is to 
receive the reply and the name of the associated CICS terminal. 

The PROTECT option must be specified on the START command to ensure 
delivery of the message to IMS. 

The start request is not shipped until your application program either issues a 
SYNCPOINT command or terminates. However, the request does not carry the 
syncpoint-indicator unless PROTECT was specified on the START command. 
 

Although CICS allows an application program to issue multiple START 
NOCHECK commands without intervening syncpoints (see “Deferred transmission 
of START requests with NOCHECK option for ISC links” on page 50), this 
technique is not recommended for CICS-to-IMS communication. 

IMS sends the reply by issuing a start request that is handled in the normal way 
by the CICS mirror transaction. The request specifies the CICS transaction and 

TRANA
(start)

(obtain terminal
input)
START NOCHECK
[PROTECT]

.
(SYNCPOINT)
RETURN

TRANB
(start)

RETRIEVE
(send to terminal)
RETURN

CICS IMS
  

Figure 83. START and RETRIEVE asynchronous processing–CICS front end

 

260 CICS TS for z/OS 4.1: Intercommunication Guide



terminal that you named in the original START command. The transaction that is 
started (TRANB) can then retrieve the reply by issuing a RETRIEVE command. 

In the above example, it has been assumed that there are two separate CICS 
transactions; one to issue the START command and one to receive the reply and 
return it to the terminal. These two transactions can be combined, and there are 
two ways in which this can be done: 
v   The first method is to write a transaction that contains both the START and the 

RETRIEVE processing, but which performs only one of these functions for a 
particular execution. The CICS ASSIGN STARTCODE command can be used to 
determine whether the transaction was initiated from the terminal, in which case 
the START processing is required, or by a start request, in which case the 
RETRIEVE processing is required. 

v   The second method is to write a transaction that, having issued the START 
command, issues a SYNCPOINT command to clear the start request, and then 
waits for the reply by issuing a RETRIEVE command with the WAIT option. The 
terminal is held by the transaction during this time, and CICS returns control to 
the transaction when input directed to the same transaction and terminal is 
received.

In all cases, you should make no assumptions about the timing of the reply or its 
relationship to a particular previous request. A RETRIEVE command retrieves any 
outstanding data intended for the same transaction and terminal. The correlation of 
requests and replies is the responsibility of your application program. 

IMS front end 
When IMS is the front-end system, the only supported flow is the asynchronous 
start request. Your application program must use the RETRIEVE command to 
obtain the request from IMS, followed by a START command to send the reply if 
one is required. 

The general command sequence for your application program is shown in 
Figure 84. 

If a reply to the retrieved data is required, your start command must specify the 
IMS editor and transaction or LTERM name obtained by the RETRIEVE command. 
   

TRANA
(start)

RETRIEVE
(communicate with
terminal)
START
(SYNCPOINT)
RETURN

(start)

CICSIMS
  

Figure 84. RETRIEVE and START asynchronous processing – IMS front end

 

Chapter 23. CICS-to-IMS applications 261



The START command 
This section shows the format of the START command that is used to schedule 
remote IMS transactions. Note that no interval control is possible (although it is 
not an error to specify INTERVAL(0)) and that the NOCHECK and PROTECT 
options must be specified. 
  EXEC CICS START TRANSID(name) 
       [SYSID(name)] 
       [FROM(data-area) LENGTH(value)] 
       [TERMID(name)] 
       [RTRANSID(name)] 
       [RTERMID(name)] 
        NOCHECK 
        PROTECT 
       [FMH] 

TRANSID(name) 
Specifies the name of the IMS editor that is to be initiated to process the 
message. It must be an alias (not exceeding four characters) of ISCEDT, or an 
MFS MID name. 

 Alternatively, it can name the installed definition of a “remote” transaction. In 
this case, the SYSID option is not used. The definition of the remote transaction 
must name the required IMS editor in the RMTNAME option, which can be up 
to eight characters long. 

SYSID(name) 
Specifies the name of the remote IMS system. This is the name that is specified 
by the system programmer in the CONNECTION option of the DEFINE 
CONNECTION command that defines the link to the remote system. You need 
this option only if you are required to name the remote system explicitly. 

FROM(data-area) 
Specifies the data that is to be sent. The format of the data (VLVB or chain of 
RUs) must match the format specified in the RECORDFORMAT option of the 
DEFINE CONNECTION command that defines the remote IMS system (see 
Chapter 13, “How to define connections to remote systems,” on page 147). 

LENGTH(value) 
Specifies, as a halfword binary value, the length of the data specified in the 
FROM option. 

TERMID(name) 
Specifies the primary resource name that is to be assigned to the remote 
process. For IMS, it is a transaction code or an LTERM name. 

 If this option is omitted, you must specify the transaction code or the LTERM 
name in the first eight characters of the data named in the FROM option. You 
must use this method if the name exceeds four characters (the CICS limit for 
the TERMID option) or if IMS password processing is required. 

RTRANSID(name) 
Specifies the name of the transaction that is to be invoked when IMS returns a 
reply to CICS. The name must not exceed four characters in length. 

RTERMID(name) 
Specifies the name of the terminal that is to be attached to the transaction 
specified in the RTRANSID option when it is invoked. The name must not 
exceed four characters in length. 

NOCHECK 
This option is mandatory. 

 

262 CICS TS for z/OS 4.1: Intercommunication Guide



PROTECT 
Specifies that the remote IMS transaction must not be scheduled until the local 
CICS transaction has taken a syncpoint. PROTECT is mandatory. 

FMH 
Specifies that the user data to be passed to the started task contains function 
management headers. This option is not normally used.

The RETRIEVE command 
This section shows the format of the RETRIEVE command that is used to retrieve 
data sent by IMS. 
  EXEC CICS RETRIEVE 
       [{INTO(data-area)|SET(pointer-ref)} 
         LENGTH(data-area)] 
       [RTRANSID(data-area)] 
       [RTERMID(data-area)] 
       [WAIT] 

INTO(data-area) 
Specifies the user data area into which the data retrieved from IMS is to be 
written. 

SET(pointer-ref) 
Specifies the pointer reference to be set to the address of the data retrieved 
from IMS. 

LENGTH(data-area) 
Specifies the halfword binary length of the retrieved data. 

 For a RETRIEVE command with the INTO option, this must be a data area that 
specifies the maximum length of data that the program is prepared to handle. 
If the value specified is less than zero, zero is assumed. If the length of the 
data exceeds the value specified, the data is truncated to that value and the 
LENGERR condition occurs. On completion of the retrieval operation, the data 
area is set to the original length of the data. 

For a RETRIEVE command with the SET option, this must be a data area. On 
completion of the retrieval operation, the data area is set to the length of the 
data. 

RTRANSID(data-area) 
Specifies an area to receive the return destination process name sent by IMS. It 
is either an MFS MID name chained from an output MOD, or is blank. 

 Your application can use this name in the TRANSID option of a subsequent 
START command. 

RTERMID(data-area) 
Specifies an area to receive the return primary resource name sent by IMS. It is 
either a transaction name or an LTERM name. 

 Your application can use this name in the TERMID option of the START 
command used to send the reply. 

WAIT 
Specifies that control is not to be returned to your application program until 
data is sent by IMS. 

 If WAIT is not specified, the ENDDATA condition is raised if no data is 
available. If WAIT is specified, the ENDDATA condition is raised only if CICS 
is shut down before any data becomes available. 

 

Chapter 23. CICS-to-IMS applications 263



The use of the WAIT option is not generally recommended, because it can 
cause intervening messages (not the expected reply) to be retrieved.

The asynchronous SEND and RECEIVE interface 
This form of asynchronous processing is, in CICS, a special case of distributed 
transaction processing. 

A CICS transaction acquires the use of a session to a remote system, and uses the 
session for a single transmission (using a SEND command with the LAST option) 
to initiate a remote transaction and send data to it. The reply from the remote 
system causes a CICS transaction to be initiated just as if it were a back-end 
transaction in normal DTP. This transaction, however, can issue only a single 
RECEIVE command, and must then free the session. 

Except for these additional restrictions, you can design your application according 
to the rules given for distributed transaction processing later in this chapter. 

The general command sequence for asynchronous SEND and RECEIVE application 
programs is shown in Figure 85. 
   

CICS-to-IMS applications—DTP 
This section describes application programming for CICS-to-IMS distributed 
transaction processing (DTP). 

For further information about DTP, see the CICS Distributed Transaction 
Programming Guide. 

CICS commands for CICS-to-IMS sessions 
These are the commands that can be used to acquire and use CICS-to-IMS sessions. 
v   ALLOCATE – used to acquire a session to the remote IMS system. 
v   BUILD ATTACH – used to build an LUTYPE6.1 attach header that is used to 

initiate a transaction on a remote IMS system. 

TRANA
(attach)

ALLOCATE
BUILD ATTACH
SEND ATTACHID

LAST
FREE

TRANB
(attach)

RECEIVE
EXTRACT ATTACH
.
FREE

CICS IMS
  

Figure 85. SEND and RECEIVE asynchronous processing – CICS front end

 

264 CICS TS for z/OS 4.1: Intercommunication Guide



v   EXTRACT ATTACH – used by a CICS transaction to recover information from 
the LUTYPE6.1 attach header that caused it to be initiated. This command is 
required only for SEND and RECEIVE asynchronous processing. 

v   SEND, RECEIVE, and CONVERSE – used by the CICS transaction to send or 
receive data on the session. The first SEND or CONVERSE command issued by 
a front-end CICS transaction must name the attach header that has been defined 
by the BUILD ATTACH command. 

v   WAIT TERMINAL SESSION(name) – used to ensure that CICS has transmitted 
any accumulated data or data flow control indicators before it continues with 
further processing. 

v   ISSUE SIGNAL SESSION(name) – used by a transaction that is in receive state 
to request an invitation to send (change-direction) from IMS. 

v   FREE – used by a CICS transaction to relinquish its use of the session.

Considerations for the front-end transaction 
Except in the special case of the receiving transaction in SEND and RECEIVE 
asynchronous processing, the CICS transaction is always the front-end transaction 
in CICS-to-IMS DTP. 

The front-end transaction is responsible for acquiring a session to the remote IMS 
system and initiating the remote transaction. Thereafter, the two transactions 
become equals. However, the front-end transaction is usually designed as the 
client, or driving, transaction. 

Session allocation 
You acquire an LUTYPE6.1 session to a remote IMS system by means of the 
ALLOCATE command, which has the following format. 
  ALLOCATE {SYSID(name)|SESSION(name)} 
    [PROFILE(name)] 
    [NOQUEUE] 

You can use the SESSION option to request the use of a specific session to the 
remote IMS system, or you can use the SYSID option to name the remote system 
and allow CICS to select an available session. The use of the SESSION option is 
not normally recommended, because it can result in an application program 
queuing on a specific session when others are available. In most cases, therefore, 
you will use the SYSID option to name the system with which the session is 
required. 

If CICS cannot find the named system, or no sessions are available, it raises the 
SYSIDERR condition. If CICS cannot find the named session or the session is out 
of service, CICS raises the SESSIONERR condition. 

The PROFILE option allows you to specify a communication profile for an 
LUTYPE6.1 session. The profile, which is set up during resource definition, 
contains a set of terminal control processing options that are to be used for the 
session. 

If you omit the PROFILE option, CICS uses the default profile DFHCICSA. This 
profile specifies INBFMH(ALL), which means that incoming function management 
headers are passed to your program and cause the INBFMH condition to be raised. 

The NOQUEUE option allows you to specify explicitly that you do not want your 
request for a session to be queued if a session is not available immediately. A 
session is “not immediately available” in any of the following situations: 

 

Chapter 23. CICS-to-IMS applications 265



v   All the sessions to the specified system are in use. 
v   The only available sessions are not bound (in which case, CICS would have to 

bind a session). 
v   The only available sessions are contention losers (in which case, CICS would 

have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on 
whether you specify NOQUEUE and also on whether your application has issued 
a HANDLE (which is still active) for the SYSBUSY condition. The possible 
combinations are shown below: 
v   Active HANDLE for SYSBUSY condition 

–   Control is returned immediately to the label specified in the HANDLE 
command, whether or not you have specified NOQUEUE.

v   No active HANDLE for SYSBUSY condition 
–   If you have specified NOQUEUE, control is returned immediately to your 

application program. The SYSBUSY code (X'D3') is set in the EIBRCODE field 
of the EXEC interface block. You should test this field immediately after 
issuing the ALLOCATE command. 

–   If you have omitted the NOQUEUE option, CICS queues the request until a 
session is available.

Whether a delay in acquiring a session is acceptable or not is dependent on your 
application. 

Similar considerations apply to an ALLOCATE command that specifies SESSION 
rather than SYSID. The associated condition is 'SESSBUSY' (EIBRCODE=X'D2'). 

The session identifier 
When a session has been allocated, the name by which it is known is available in 
the EIBRSRCE field in the EIB. 

Because EIBRSRCE will probably be overwritten by the next EXEC CICS 
command, you must acquire the session name immediately. It is the name that you 
must use in the SESSION parameter of all subsequent commands that relate to this 
session. 

Automatic transaction initiation 
If the front-end transaction is designed to be started by automatic transaction 
initiation (ATI) in the local system, and is required to hold a conversation with an 
LUTYPE6.1 session as its principal facility, the session has already been allocated 
when the transaction starts. 

You can omit the SESSION parameter from commands that relate to the principal 
facility. If, however, you want to name the session explicitly in these commands, 
you should obtain the name from EIBTRMID. 

Attaching the remote transaction 
When a session has been acquired, the next step is to cause the remote IMS process 
to be initiated. 

The LUTYPE6.1 architecture defines a special function management header, called 
an attach header, which carries the name of the remote process (in CICS terms, the 
transaction) that is to be initiated, and also contains further session-related 
information. 

 

266 CICS TS for z/OS 4.1: Intercommunication Guide



CICS provides the BUILD ATTACH command to enable a CICS application 
program to build an attach header to send to IMS, and the EXTRACT ATTACH 
command to enable information to be obtained from attach headers received from 
IMS. 

Because these commands are available, you do not need to know the detailed 
format of an LUTYPE6.1 attach header. In most cases, however, you need to know 
the meaning of the information that it carries. 

The format of the BUILD ATTACH command is: 
  BUILD ATTACH 
     ATTACHID(name) 
    [PROCESS(ISCEDT|BASICEDT∨name)] 
    [RESOURCE(name)] 
    [RPROCESS(name)] 
    [RRESOURCE(name)] 
    [QUEUE(name)] 
    [IUTYPE(0|data-value)] 
    [DATASTR(0|data-value)] 
    [RECFM(data-value)] 

The parameters of the BUILD ATTACH command have the following meanings: 

ATTACHID(name) 
The ATTACHID option enables you to assign a name to the attach header so 
that you can refer to it in a subsequent SEND or CONVERSE command. (The 
BUILD ATTACH command builds an attach header; it does not transmit it.) 

PROCESS(name) 
This corresponds to the process name, ATTDPN, in an attach FMH. It specifies 
the remote process that is to be initiated. 

 In CICS-to-IMS communication, the remote process is always an editor. It can 
be ISCEDT (or its alias), BASICEDT, or an MFS MID name. The process name 
must not exceed eight characters. 

If the PROCESS option is omitted, IMS assumes ISCEDT. 

RESOURCE(name) 
This corresponds to the resource name, ATTPRN, in an attach FMH. 

 The RESOURCE option specifies the primary resource name (up to eight 
characters) that is to be assigned to the remote process that is being initiated. 

In CICS-to-IMS communication, the primary resource name is either an IMS 
transaction code or a logical terminal name. You can omit the RESOURCE 
option if the IMS message destination is specified in the first eight bytes of the 
message or if the destination is preset by the IMS operator. 

If a primary resource name is supplied to IMS, the data stream is not edited 
for destination and security information. You should therefore omit the 
RESOURCE option if IMS password processing is required. 

The name in the RESOURCE option is ignored during conversational 
processing, or if the remote process is BASICEDT. 

RPROCESS(name) 
This corresponds to the return process name, ATTRDPN, in an attach FMH. 

 The RPROCESS option specifies a suggested return destination process name. 
IMS returns this name as a destination process name (ATTDPN) when it sends 
a reply to CICS, although the name may be overridden by MFS. 

 

Chapter 23. CICS-to-IMS applications 267



CICS uses the returned destination process name to determine the transaction 
that is to be attached after a session restart. At any other time, it is ignored. 
The RPROCESS option should therefore name a transaction that will handle 
any queued messages when it is attached by CICS at session restart following 
a session failure. 

RRESOURCE(name) 
This corresponds to the return resource name, ATTRPRN, in an attach FMH. 

 The RRESOURCE option specifies a suggested primary resource name that is 
to be assigned to the return process. IMS returns this name as the resource 
name (ATTPRN) when it sends a reply to CICS. 

Although CICS normally ignores this field, one use for it in ISC is to specify a 
CICS terminal to which output messages occurring after session restart should 
be sent. 

QUEUE(name) 
This corresponds to the queue name, ATTDQN, in an attach FMH. 

 The QUEUE option specifies a queue that can be associated with the remote 
process. In CICS-to-IMS communication, it is used only to send a paging 
request to IMS during demand paging. The name used must be the one 
obtained by a previous EXTRACT ATTACH QNAME command. The name 
must not exceed eight characters. 

IUTYPE(data-value) 
This corresponds to the interchange unit field, ATTIU, in an attach FMH. 

 The IUTYPE option specifies SNA chaining information for the message. The 
value is halfword binary. The bits in the binary value are used as follows: 

 0–7 X'00' – must be set to zero 
8–15 X'00' – multiple RU chains 
  X'01' – single RU chains.

  

DATASTR(data-value) 
This corresponds to the data stream profile field, ATTDSP, in an attach FMH. 

 The DATASTR option is used to select an IMS component. The value is 
halfword binary. The bits in the binary value are used as follows: 

 0–7 X'00' – must be set to zero 
8–11 0000 – (user-defined data stream) 
12–15 0000 – IMS Component 1 
  0001 – IMS Component 2 
  0010 – IMS Component 3 
  0011 – IMS Component 4.

  

If the DATASTR option is omitted, IMS Component 1 is assumed. 

RECFM(data-value) 
This corresponds to the deblocking algorithm field, ATTDBA, in an attach 
FMH. 

 The RECFM option specifies the format of the user data that is sent to the 
remote process. The name must represent a halfword binary value. The bits in 
the binary value are used as follows: 

 0–7 X'00' – reserved – must be set to zero 
8–15 X'01' – variable-length variable-blocked (VLVB) format 

 

268 CICS TS for z/OS 4.1: Intercommunication Guide



X'04' – chain of RUs.
  

If VLVB is specified, your application program must add a two-byte binary 
length field in front of each record. If chain of RUs is specified, you can send 
your data in the usual way; no length fields are required. 

A record is interpreted by IMS as either a segment of a message (without MFS) 
or an MFS record (with MFS). 

The RECFM option indicates only the type of the message format. Multiple 
records can be sent by one SEND command. In this case, it is the responsibility 
of your application program to perform the blocking.

Having built the attach header, you must ensure that it is transmitted with the first 
data sent to the remote system by naming it in the ATTACHID option of the SEND 
or CONVERSE command. 

Building your own attach header 
CICS allows you to build an attach header, or any function management header, as 
part of your output data. 

You can therefore initiate the remote transaction by including an LUTYPE6.1 attach 
header in the output area referenced by the first SEND or CONVERSE command. 
You must specify the FMH option on the command to tell CICS that the data 
contains an FMH. 

Considerations for the back-end transaction 
A CICS transaction can be the back-end transaction in CICS-to-IMS communication 
only in the special case of SEND and RECEIVE asynchronous processing. 

The transaction is initiated by an LUTYPE6.1 attach FMH received from the remote 
IMS system, and is allowed to issue only a single RECEIVE command, possibly 
followed by an EXTRACT ATTACH command. 

Acquiring session-related information 
You can use the EXTRACT ATTACH command to recover session-related 
information from the attach FMH if required, but the use of this command is not 
mandatory. 

The presence of an attach header is indicated by EIBATT, which is set after the first 
RECEIVE command has been issued. 

The format of the EXTRACT ATTACH command is: 
  EXTRACT ATTACH 
    [SESSION(data-area)] 
    [PROCESS(data-area)] 
    [RESOURCE(data-area)] 
    [RPROCESS(data-area)] 
    [RRESOURCE(data-area)] 
    [QUEUE(data-area)] 
    [IUTYPE(data-area)] 
    [DATASTR(data-area)] 
    [RECFM(data-area)] 

The parameters of the EXTRACT ATTACH command have the following 
meanings: 

 

Chapter 23. CICS-to-IMS applications 269



DATASTR(data-area) 
Contains a value specifying the IMS output component. 

 The data area must be a halfword binary field. The values set by IMS are as 
follows: 

 0–7 X'00'– (zero) 
8–11 0000 – (user-defined data stream) 
12–15 0000 – IMS Component 1 
  0001 – IMS Component 2 
  0010 – IMS Component 3 
  0011 – IMS Component 4.

  

IUTYPE(data-area) 
indicates SNA chaining information for the message and the type of MFS 
paged output. 

 The data area must be a halfword binary field. The values set by IMS are as 
follows: 

 0–7 X'00' – (zero) 
8–15 X'00' – multiple RU chains, MFS autopaged output 
  X'01' – single RU chains, MFS nonpaged output 
  X'05' – single RU chains, MFS demand-paged output.

  

PROCESS(data-area) 
IMS returns either the return destination process name specified in the 
RPROCESS option of the BUILD ATTACH command, or a value set by the 
MFS MOD. 

QUEUE(data-area) 
IMS returns the LTERM name associated with the ISC session when MFS 
demand-paged output is ready to be sent. The returned value should be used 
in the QMODEL FMH and the BUILD ATTACH QNAME when a paging 
request is to be sent. 

RECFM(data-area) 
Contains the data format of the incoming user message. 

 The data area must be a halfword binary field. The values set by IMS are as 
follows: 

 0–7 X'00' – (zero) 
8–15 X'01' – variable-length variable-blocked (VLVB) format 
  X'04' – chain of RUs (can also be X'00' or X'05').

  

If VLVB is specified, your application program must deblock the message by 
using the halfword-binary length field that precedes each record. 

RESOURCE(data-area) 
IMS returns either the return resource name specified in the RRESOURCE 
option of the BUILD ATTACH command, or a value set by the MFS MOD. 

RPROCESS(data-area) 
IMS sends the chained MFS MID name if MFS is being used. Otherwise, no 
value is sent. 

RRESOURCE(data-area) 
IMS sends the value set by the MFS MOD if MFS is being used. Otherwise, no 
value is sent.

 

270 CICS TS for z/OS 4.1: Intercommunication Guide



Initial state of back-end transaction 
The back-end transaction is initiated in receive state, and should issue RECEIVE as 
its first command or after EXTRACT ATTACH. 

The conversation 
The conversation between the front-end and the back-end transactions is held 
using the usual SEND, RECEIVE, and CONVERSE commands. 

For programming information about these commands, see SEND (LUTYPE6.1), 
RECEIVE (LUTYPE6.1), and CONVERSE (LUTYPE6.1), in the CICS Application 
Programming Reference. 

In each of these commands, you must name the session in the SESSION option 
unless the conversation is with the principal facility. 

Deferred transmission 
On ISC sessions, when you issue a SEND command, CICS normally defers sending 
the data until it becomes clear what your further intentions are. This mechanism 
enables CICS to avoid unnecessary flows by adding control indicators on the data 
that is awaiting transmission. 

In general, IMS does not accept indicators such as change-direction, 
syncpoint-request, or end-bracket as stand-alone transmissions on null RUs. You 
should therefore always allow deferred transmission to operate, and avoid using 
the WAIT option or the WAIT TERMINAL command to force transmissions to take 
place. 

Using the LAST option 
The LAST option on the SEND command indicates the end of the conversation. No 
further data flows can occur on the session, and the next action must be to free the 
session. However, the session can still carry CICS syncpointing flows before it is 
freed. 

The LAST option and syncpoint flows 
A syncpoint on an ISC session is initiated explicitly by a SYNCPOINT command, 
or implicitly by a RETURN command. 

If your conversation has been terminated by a SEND LAST command, without the 
WAIT option, transmission has been deferred, and the syncpointing activity causes 
the final transmission to occur with an added syncpoint request. The conversation 
is thus automatically involved in the syncpoint. 

Freeing the session 
You must free the session after issuing a SEND LAST command, or when the 
EIBFREE field has been set. 

The command used to free the session has the following format: 
  FREE SESSION(conversation-name) 

CICS allows you to issue the FREE command at any time that your transaction is 
in send state. CICS determines whether the end-bracket indicator has already been 
transmitted, and transmits it if necessary before freeing the session. If there is also 
deferred data to transmit, the end-bracket indicator is transmitted with the data. 
Otherwise, the indicator is transmitted by itself. 

 

Chapter 23. CICS-to-IMS applications 271



Because only some IMS input components accept a stand-alone end-bracket 
indicator, this use of FREE is not recommended for CICS-to-IMS communication. 

The EXEC interface block (EIB) 
This section highlights the fields that are of particular significance in ISC 
applications. 

For programming information about the EXEC interface block (EIB), see EXEC 
interface block, in the CICS Application Programming Reference. For further details of 
how and when these fields should be tested or saved, refer to “Command 
sequences for CICS-to-IMS sessions” on page 273. 

Conversation identifier fields 
The EIB fields EIBTRMID and EIBRSRCE enable you to obtain the name of the ISC 
session. 

EIBTRMID 
Contains the name of the principal facility. For a back-end transaction, or for a 
front-end transaction started by ATI, it is the conversation identifier (SESSION). 
You must acquire this name if you want to state the session name of the 
principal facility explicitly. 

EIBRSRCE 
Contains the session identifier (SESSION) for the session obtained by means of 
an ALLOCATE command. You must acquire this name immediately after 
issuing the ALLOCATE command.

Procedural fields 
These fields contain information on the state of the session. In most cases, the 
settings relate to the session named in the last-executed RECEIVE or CONVERSE 
command, and should be tested, or saved for later testing, after the command has 
been issued. 

Further information about the use of these fields is given in “Command sequences 
for CICS-to-IMS sessions” on page 273. 

EIBRECV 
Indicates that the conversation is in receive state and that the normal 
continuation is to issue a RECEIVE command. 

EIBCOMPL 
This field is used in conjunction with the RECEIVE NOTRUNCATE command; 
it is set when there is no more data available. 

EIBSYNC 
Indicates that the application must take a syncpoint or terminate. 

EIBSIG 
Indicates that the conversation partner has issued an ISSUE SIGNAL 
command. 

EIBFREE 
Indicates that the receiver must issue a FREE command for the session.

Information fields 
The following fields contain information about FMHs received from the remote 
transaction. 

EIBATT 
Indicates that the data received contained an attach header. The attach header 

 

272 CICS TS for z/OS 4.1: Intercommunication Guide



is not passed to your application program; however, EIBATT indicates that an 
EXTRACT ATTACH command is appropriate. 

EIBFMH 
Indicates that the data passed to your application program contains a 
concatenated FMH.

If you want to use these facilities, you must ensure that you use communication 
profiles that specify INBFMH(ALL). The default profile (DFHCICSA) for a session 
allocated by a CICS front-end transaction has this specification. However, the 
default principal facility profile (DFHCICST) for a CICS back-end transaction does 
not. Further information about this subject is given under “Defining 
communication profiles” on page 229. 

Command sequences for CICS-to-IMS sessions 
The command sequences that you use to communicate between the front-end and 
the back-end transactions are governed both by the requirements of your 
application and by a set of high-level protocols designed to ensure that commands 
are not issued in inappropriate circumstances. 

The protocols presented in this section do not cover all possible command 
sequences. However, by following them, you ensure that each transaction takes 
account of the requirements of the other. This helps to avoid errors during 
program development. 

Conversation states 
The protocols are based on the concept of several separate states. 

These states apply only to the particular conversation, not to your entire 
application program. In each state, there is a choice of commands that might most 
reasonably be issued. After the command has been issued, fields in the EIB can be 
tested to learn the current requirements of the conversation. The results of these 
tests, together with the command that has been issued, may cause a transition to 
another state, when another set of commands becomes appropriate. 

The states that are defined for this section are: 
v   State 1 – Session not allocated 
v   State 2 – Send state 
v   State 3 – Receive pending after SEND INVITE 
v   State 4 – Receive state 
v   State 5 – Receiver take syncpoint 
v   State 6 – Free pending after SEND LAST 
v   State 7 – Free session.

Initial states 
Normally, the front-end transaction in a conversation starts in state 1 (session not 
allocated) and must issue an ALLOCATE command to acquire a session. 

An exception to this occurs when the front-end transaction is started by automatic 
transaction initiation (ATI), in the local system, with an LUTYPE6.1 session as its 
principal facility. Here, the session is already allocated, and the transaction is in 
state 2. For transactions of this type, you must immediately obtain the session 
name from EIBTRMID so that you can name the session explicitly on later 
commands. 

 

Chapter 23. CICS-to-IMS applications 273



You must always assume that the back-end transaction is initially in state 4 
(receive state). Even if it is designed only to send data to the front-end transaction, 
you must issue a RECEIVE to receive the SEND INVITE issued by the front-end 
transaction and get into send state. 

State diagrams 
The following diagrams help you to construct valid command sequences. Each 
diagram relates to one particular state, as previously defined, and shows the 
commands that you might reasonably issue, and the tests that you should make, 
after issuing the command. Where more than one test is shown, make them in the 
order indicated. 

The combination of the command issued and a particular positive test result lead 
to a new, resultant state, shown in the final column. 

Other tests 
The tests that are shown in the figures are those that are significant to the state of 
the conversation. Tests for other conditions that may arise, for example, INVREQ 
or NOTALLOC, should be made in the normal way. 

 Table 17. State 1—session not allocated 

STATE 1 — CICS-TO-IMS CONVERSATIONS — SESSION NOT ALLOCATED 

Commands you can issue What to test New state 

ALLOCATE [NOQUEUE] * SYSIDERR 1 

Ditto SYSBUSY * 1 

Ditto 
Otherwise (obtain session name from 
EIBRSRCE) 

2

  

If you want your program to wait until a session is available, omit the NOQUEUE 
option of the ALLOCATE command and do not code a HANDLE command for the 
SYSBUSY condition. 

If you want control to be returned to your program if a session is not immediately 
available, either specify NOQUEUE on the ALLOCATE command and test 
EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY 
command. 

 Table 18. State 2—send state 

STATE 2 — CICS-TO-IMS CONVERSATIONS — SEND STATE 

Commands you can issue * What to test New state 

SEND 2 

SEND INVITE — 3 or 4 

SEND LAST — 6 

CONVERSE 

Equivalent to: 
SEND INVITE WAIT 
RECEIVE 

Go to the STATE 4 table and make the tests 
shown for the RECEIVE command. 

— 

RECEIVE Go to the STATE 4 table and make the tests 
shown for the RECEIVE command. 

— 

SYNCPOINT (Transaction abends if SYNCPOINT fails.) 2 

 

274 CICS TS for z/OS 4.1: Intercommunication Guide



Table 18. State 2—send state (continued) 

STATE 2 — CICS-TO-IMS CONVERSATIONS — SEND STATE 

Commands you can issue * What to test New state 

FREE 

Equivalent to: 
SEND LAST WAIT 
FREE 

— 1

  

For the front-end transaction, the first command used after the session has been 
allocated must be a SEND command or CONVERSE command that initiates the 
back-end transaction in one of the ways described under “Attaching the remote 
transaction” on page 266. 

 Table 19. State 3—receive pending after SEND INVITE 

STATE 3 — CICS-TO-IMS CONVERSATIONS — RECEIVE PENDING after SEND 
INVITE 

Commands you can issue What to test New state 

SYNCPOINT (Transaction abends if SYNCPOINT fails.) 4
  

 Table 20. State 4—receive state 

STATE 4 — CICS-TO-IMS CONVERSATIONS — RECEIVE STATE 

Commands you can issue What to test New state 

RECEIVE [NOTRUNCATE] * EIBCOMPL * — 

Ditto EIBSYNC 5 

Ditto EIBFREE 7 

Ditto EIBRECV 4 

Ditto Otherwise 2
  

If NOTRUNCATE is specified, a zero value in EIBCOMPL indicates that the data 
passed to the application by CICS is incomplete (because, for example, the data 
area specified in the RECEIVE command is too small). CICS saves the remaining 
data for retrieval by later RECEIVE NOTRUNCATE commands. EIBCOMPL is set 
when the last part of the data is passed back. If the NOTRUNCATE option is not 
specified, over-length data is indicated by the LENGERR condition, and the 
remaining data is discarded by CICS. 

 Table 21. State 5—receiver take syncpoint 

STATE 5 — CICS-TO-IMS CONVERSATIONS — RECEIVER TAKE SYNCPOINT 

Commands you can issue What to test New state 

SYNCPOINT EIBFREE (saved value) 7 

Ditto EIBRECV (saved value) 4 

Ditto Otherwise 2
  

 Table 22. State 6—free pending after SEND LAST 

STATE 6 — CICS-TO-IMS CONVERSATIONS — FREE PENDING AFTER SEND LAST 

Commands you can issue What to test New state 

SYNCPOINT — 7 

 

Chapter 23. CICS-to-IMS applications 275



Table 22. State 6—free pending after SEND LAST (continued) 

STATE 6 — CICS-TO-IMS CONVERSATIONS — FREE PENDING AFTER SEND LAST 

Commands you can issue What to test New state 

FREE — 1
  

 Table 23. State 7—free session 

STATE 7 — CICS-TO-IMS CONVERSATIONS — FREE SESSION 

Commands you can issue What to test New state 

FREE — 1
 

 

276 CICS TS for z/OS 4.1: Intercommunication Guide



Part 5. Performance in an intersystem environment 

This part gives advice on improving aspects of CICS performance in a 
multi-system environment. 

Chapter 24, “Intersystem session queue management,” on page 279 describes 
methods for controlling the length of intersystem queues. 

Chapter 25, “Efficient deletion of shipped terminal definitions,” on page 283 
describes how to delete redundant shipped terminal definitions from AORs and 
intermediate systems. 

 

© Copyright IBM Corp. 1977, 2011 277



278 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 24. Intersystem session queue management 

This chapter describes how to control the number of queued requests for sessions 
on intersystem links (allocate queues). 

Note: This chapter describes how to control queues for sessions on established 
connections. The specialized subject of using local queuing for function-shipped 
EXEC CICS START NOCHECK requests is described in “Local queuing of START 
commands” on page 51. 

Overview of session queue management 
In a perfect intercommunication environment, queues would never occur because 
work flow would be evenly distributed over time, and there would be enough 
intersystem sessions available to handle the maximum number of requests arriving 
at any one time. 

However, in the real world this is not the case, and, with peaks and troughs in the 
workload, queues do occur: queues come and go in response to the workload. The 
situation to avoid is an unacceptably high level of queuing that causes a bottleneck 
in the work flow between interconnected CICS regions, and which leads to 
performance problems for the terminal end-user as throughput slows down or 
stops. This abnormal and unexpected queuing should be prevented, or dealt with 
when it occurs: a “normal” or optimized level of queuing can be tolerated. 

For example, function shipping requests between CICS application-owning regions 
and connected file-owning regions can be queued in the issuing region while 
waiting for free sessions. Provided a file-owning region deals with requests in a 
responsive manner, and outstanding requests are removed from the queue at an 
acceptable rate, then all is well. But if a file-owning region is unresponsive, the 
queue can become so long and occupy so much storage that the performance of 
connected application-owning regions is severely impaired. Further, the impaired 
performance of the application-owning region can spread to other regions. This 
condition is sometimes referred to as “sympathy sickness”, although it should 
more properly be described as intersystem queuing, which, if not controlled, can 
lead to performance degradation across more than one region. 

Managing allocate queues 
There are three methods for managing allocate queues. 

Using resource definitions to manage your queues 
You can specify the QUEUELIMIT and MAXQTIME options on the CONNECTION 
and IPCONN resource definitions for intersystem links that have simple control 
requirements; for example, links that carry noncritical traffic. 

QUEUELIMIT defines the maximum number of allocate requests that CICS is to 
queue while waiting for free sessions on the connection. 

MAXQTIME defines the approximate time for which allocate requests will queue 
for free sessions on a connection that is unresponsive. MAXQTIME is used only if 
a queue limit is specified on QUEUELIMIT, and if that limit is reached. 

 

© Copyright IBM Corp. 1977, 2011 279



When an allocate request is received that causes the QUEUELIMIT value to be 
exceeded, CICS calculates whether the rate of processing of the queue will allow 
the new request to be processed in the maximum queuing time. If the request is 
not processed, CICS purges the queue. No further queuing takes place until the 
connection has freed a session. At this point, queuing begins again. 

When CICS purges an allocate request because the QUEUELIMIT and MAXQTIME 
settings are exceeded, the SYSIDERR condition is returned to the application 
program. 

For information about the QUEUELIMIT and MAXQTIME attributes, see 
CONNECTION definition attributes and IPCONN definition attributes, in the CICS 
Resource Definition Guide. 

Using the NOQUEUE option 
A further method of controlling explicit allocate requests is to specify the 
NOQUEUE|NOSUSPEND option of the EXEC CICS ALLOCATE command. 

However, while this enables you to control specific requests, it takes no account of 
the state of the queue at the time the requests are issued. And it is of no use in 
controlling implicit allocate requests (where the session request is instigated by, for 
example, a function shipping request). For programming information about API 
options, see ALLOCATE (APPC), in the CICS Application Programming Reference. 

Using the XISQUE and XZIQUE global user exits 
You can control the queuing of allocate requests through a global user exit 
program, which provides more flexibility than setting a queue limit on the 
connection. Use XISQUE to manage IPIC queues and XZIQUE to manage MRO 
and APPC queues. 

With the XISQUE and XZIQUE exits, you can quickly detect queuing problems 
(bottlenecks). Both exits enable allocate requests to be queued or rejected, 
depending on the length of the queue. You can use XISQUE and XZIQUE to stop 
and then reestablish a connection that has a bottleneck. 

The XZIQUE exit extends the function that the XISCONA exit provides for MRO 
and APPC connections. XISCONA is called for function shipping and DPL requests 
only, including function shipped EXEC CICS START requests used for 
asynchronous processing. XZIQUE is called for transaction routing, asynchronous 
processing, and distributed transaction processing requests, in addition to function 
shipping and DPL. Compared with the XISCONA exit, XZIQUE receives more 
detailed informationon which to base its action. For information on the relationship 
between XISCONA and XZIQUE, see the CICS Customization Guide. 

Uses of a queuing global user exit program 

When the exit is enabled, your XZIQUE or XISQUE global user exit program can 
check on the state of the allocate queue for a particular connection in the local 
system. 

Information is passed to the exit program in a parameter list that is structured to 
provide data about nonspecific allocate requests or requests for specific 
modegroups, depending on the session request. If you are using the XZIQUE exit, 
nonspecific allocate requests are for MRO, LU6.1, and APPC sessions that do not 
specify a modegroup. 

 

280 CICS TS for z/OS 4.1: Intercommunication Guide

|
|
|

|
|
|
|



Using the information passed in the parameter list, your global user exit program 
selects the system action to take: 
v   Queue the allocate request. This action is possible only if the queue limit has not 

been reached. 
v   Reject the allocate request. 
v   Reject this allocate request and purge all queued requests for the connection. 
v   Reject this allocate request and purge all queued requests for the modegroup.

Your exit program might base its action on one of the following criteria: 
v   The length of the allocate queue. 
v   Whether the number of queued requests has reached the limit set by the 

QUEUELIMIT option. If the queue limit has not been reached, you might decide 
to queue the request. 

v   The rate at which sessions are being allocated on the connection. If the queue 
limit has been reached but session allocation is acceptably quick, you might 
decide to reject only the current request. If the queue limit has been reached and 
session allocation is unacceptably slow, you might decide to purge the whole 
queue.

For details of the information passed in the XISQUE parameter list, and advice 
about designing and coding an XISQUE exit program, see the programming 
information in the CICS Customization Guide. 

For details of the information passed in the XZIQUE parameter list, and advice 
about designing and coding an XZIQUE exit program, see the programming 
information in the CICS Customization Guide. 

 

Chapter 24. Intersystem session queue management 281

|
|
|



282 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 25. Efficient deletion of shipped terminal definitions 

This chapter describes how CICS deletes redundant shipped terminal definitions. 

It contains the following topics: 
v   “Overview of how shipped terminals are deleted” 
v   “Implementing timeout delete” on page 284 
v   “Tuning the performance of timeout delete” on page 285

Overview of how shipped terminals are deleted 
In a transaction routing environment, terminal definitions can be “shipped” from a 
terminal-owning region (TOR) to an application-owning region (AOR) when they 
are first needed, rather than being statically defined in the AOR. 

Note: The “terminal” could be an APPC device or system. In this case, the shipped 
definition would be of an APPC connection. 

Shipped definitions can become redundant if: 
v   A terminal user logs off 
v   A terminal user stops using remote transactions 
v   The TOR is shut down 
v   The TOR is restarted, autoinstalled terminal definitions are not recovered, and 

the autoinstall user program, DFHZATDX, assigns a new set of termids to the 
same set of terminals.

At some stage redundant definitions must be deleted from the AOR (and from any 
intermediate systems between the TOR and AOR). For brevity, we shall refer to 
AORs and intermediate systems collectively as “back-end systems. This is 
particularly necessary in the last case above, to prevent a possible mismatch 
between termids in the TOR and the back-end systems. 

CICS method of deleting redundant shipped definitions consists of two parts: 
v   Selective deletion 
v   A timeout delete mechanism.

Selective deletion 
Each time a terminal definition is installed, CICS creates a unique “instance token” 
and stores it within the definition. 

Thus, if the definition is shipped to another region, the value of the token is 
shipped too. All transaction routing attach requests pass the token within the 
function management header (FMH). If, during attach processing, an existing 
shipped definition is found in the remote region, it is used only if the token in the 
shipped definition matches that passed by the TOR. Otherwise, it is deleted and an 
up-to-date definition shipped. 

 

© Copyright IBM Corp. 1977, 2011 283



The timeout delete mechanism 
You can use the timeout delete mechanism in your back-end systems, to delete 
shipped definitions that have not been used for transaction routing for a defined 
period Its purpose is to ensure that shipped definitions remain installed only while 
they are in use. 

Note: Shipped definitions are not deleted if there is an automatic initiate 
descriptor (AID) associated with the terminal. 

Timeout delete gives you flexible control over shipped definitions. CICS allows 
you to: 
v   Stipulate the minimum time a shipped definition must remain installed before 

being eligible for deletion 
v   Stipulate the time interval between invocations of the mechanism 
v   Reset these times online 
v   Cause the timeout delete mechanism to be invoked immediately.

The parameters that control the mechanism allow you to arrange for a “tidy-up” 
operation to take place when the system is least busy. Your operators can use the 
CEMT transaction to modify the parameters online, or to invoke the mechanism 
immediately, should fine-tuning become necessary. 

Implementing timeout delete 
To use timeout delete in a CICS Transaction Server for z/OS system to which 
terminals are shipped, you need only specify two system initialization parameters. 

DSHIPIDL={020000|hhmmss} 
Specifies the minimum time, in hours, minutes, and seconds, that an inactive 
shipped terminal definition must remain installed in this region. When the 
CICS timeout delete mechanism is invoked, only those shipped definitions that 
have been inactive for longer than the specified time are deleted. 

 You can use this parameter in a transaction routing environment, on the 
application-owning and intermediate regions, to prevent terminal definitions 
having to be reshipped because they have been deleted prematurely. 

hhmmss 
Specify a 1 to 6 digit number in the range 0-995959. Numbers that have 
fewer than six digits are padded with leading zeros.

DSHIPINT={120000|0|hhmmss} 
Specifies the interval between invocations of the CICS timeout delete 
mechanism. The timeout delete mechanism removes any shipped terminal 
definitions that have not been used for longer than the time specified by the 
DSHIPIDL parameter. 

 You can use this parameter in a transaction routing environment, on the 
application-owning and intermediate regions, to control: 
v   How often the timeout delete mechanism is invoked. 
v   The approximate time of day at which a mass delete operation is to take 

place, relative to CICS startup.

0 The timeout delete mechanism is not invoked. You might set this value 
in a terminal-owning region, or if you are not using shipped 
definitions. 

 

284 CICS TS for z/OS 4.1: Intercommunication Guide



hhmmss 
Specify a 1 to 6 digit number in the range 1-995959. Numbers that have 
fewer than six digits are padded with leading zeros.

For details of how to specify system initialization parameters, see Specifying CICS 
system initialization parameters, in the CICS System Definition Guide. 

After CICS startup you can use a CEMT or EXEC CICS INQUIRE DELETSHIPPED 
command to discover the current settings of DSHIPIDL and DSHIPINT. For 
flexible control over when mass delete operations take place, you can use a SET 
DELETSHIPPED command to reset the interval until the next invocation of the 
timeout delete mechanism. (The revised interval starts from the time the command is 
issued, not from the time the remote delete mechanism was last invoked, nor from 
CICS startup.) Alternatively, you can use a PERFORM DELETSHIPPED command 
to cause the timeout delete mechanism to be invoked immediately. 

For information about the CEMT INQUIRE, PERFORM, and SET DELETSHIPPED 
commands, see CEMT INQUIRE DELETSHIPPED, CEMT PERFORM 
DELETSHIPPED, and CEMT SET DELETSHIPPED, in the CICS Supplied 
Transactions manual. For programming information about their EXEC CICS 
equivalents, see INQUIRE DELETSHIPPED, PERFORM DELETSHIPPED, and SET 
DELETSHIPPED, in the CICS System Programming Reference manual. 

Tuning the performance of timeout delete 
A careful choice of DSHIPINT and DSHIPIDL settings results in a minimal number 
of mass deletions of shipped definitions, and a scheduling of those that do take 
place for times when your system is lightly loaded. 

Conversely, a poor choice of settings could result in unnecessary mass delete 
operations. Here are some suggestions for coding DSHIPINT and DSHIPIDL: 

DSHIPIDL 
In setting this value, you must consider the length of the work periods during 
which remote users access resources on this system. Do they access the system 
intermittently, all day? Or is their work concentrated into intensive, shorter 
periods? 

By setting too low a value, you could cause definitions to be deleted and 
reshipped unnecessarily. It is also possible that you could cause automatic 
transaction initiation (ATI) requests to fail with the “terminal not known” 
condition. This condition occurs when an ATI request names a terminal that is not 
defined to this system. Usually, the terminal is not defined because it is owned by 
a remote system, you are using shippable terminals, and no prior transaction 
routing has taken place from it. By allowing temporarily inactive shipped 
definitions too short a life, you could increase the number of calls to the XALTENF 
and XICTENF global user exits that deal with the “terminal not known” condition. 

DSHIPINT 
You can use this value to control the time of day at which your mass delete 
operations take place. 

For example, if you usually warm-start CICS at 7 a.m., you could set DSHIPINT to 
150000, so that the timeout delete mechanism is invoked at 10 p.m., when few 
users are accessing the system. 

 

Chapter 25. Efficient deletion of shipped terminal definitions 285



Attention:  If CICS is recycled, perhaps because of a failure, the timeout delete 
interval is reset. Continuing the previous example, if CICS is recycled at 8:00 p.m., 
the timeout delete mechanism will be invoked at 11:00 a.m. the following day (15 
hours from the time of CICS initialization). In these circumstances, you could use 
the SET DELETSHIPPED and PERFORM DELETSHIPPED commands to accurately 
control when a timeout delete takes place. 

CICS provides statistics to help you tune the DFHIPIDL and DFHIPINT 
parameters. The statistics are available online, and are mapped by the DFHA04DS 
DSECT. For details of the statistics provided, see the CICS Performance Guide. 

 

286 CICS TS for z/OS 4.1: Intercommunication Guide



Part 6. Recovery and restart in an intersystem environment 

This part tells you what CICS can do if things go wrong in an intercommunication 
environment, and what you can do to help. 

Chapter 26, “Recovery and restart in interconnected systems,” on page 289 deals 
with individual session failure, and with system failure and restart. 

Chapter 27, “Intercommunication and XRF,” on page 317 discusses those aspects of 
CICS extended recovery facility (XRF) that affect intercommunication. 

Chapter 28, “Intercommunication and VTAM persistent sessions,” on page 319 
discusses those aspects of CICS support for VTAM persistent sessions that affect 
intercommunication. 

 

© Copyright IBM Corp. 1977, 2011 287



288 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 26. Recovery and restart in interconnected systems 

This chapter describes those aspects of CICS recovery and restart that apply 
particularly in the intercommunication environment. It assumes that you are 
familiar with the concepts of units of work (UOWs), synchronization points 
(syncpoints), dynamic transaction backout, and other topics related to recovery and 
restart in a single CICS system. 

These topics are presented in detail in the CICS Recovery and Restart Guide. 

In the intercommunication environment, most of the single-system concepts remain 
unchanged. Each system has its own system log (or the equivalent for non-CICS 
systems), and is normally capable of either committing or backing out changes that 
it makes to its own recoverable resources. 

In the intercommunication environment, however, a unit of work can include 
actions that are to be taken by two or more connected systems. Such a unit of 
work is known as a distributed unit of work, because the resources to be accessed 
are distributed across more than one system. A distributed unit of work is made 
up of two or more local units of work, each of which represents the work to be 
done on one of the participating systems. In a distributed unit of work, the 
participating systems must agree to commit the changes they have made; this, in 
turn, means that they must exchange syncpoint requests and responses over the 
intersystem sessions. This requirement represents the single major difference 
between recovery in single and multiple systems. 

The rest of this chapter contains the following topics: 
v   “Terminology” 
v   “Syncpoint exchanges” on page 290 
v   “Recovery functions and interfaces” on page 293 
v   “Initial and cold starts” on page 297 
v   “Managing connection definitions” on page 300 
v   “Connections that do not fully support shunting” on page 302 
v   “APPC connection quiesce processing” on page 304 
v   “Problem determination” on page 304

Terminology 
The system programming and CEMT commands and the CICS messages described 
later in the chapter return information about local UOWs. 

Important:  

1.   For brevity, in this chapter, the terms CICS Transaction Server for z/OS and CICS 
TS for z/OS are used to mean all the following CICS products: 
v   CICS Transaction Server for z/OS, Version 3 Release 2 
v   CICS Transaction Server for z/OS, Version 3 Release 1 
v   CICS Transaction Server for z/OS, Version 2 Release 3 
v   CICS Transaction Server for z/OS, Version 2 Release 2

 

© Copyright IBM Corp. 1977, 2011 289



2.   In this chapter, the terms “unit of work” and “UOW” mean a local unit of 
work—that is, that part of a distributed unit of work that relates to resources on the 
local system. 
Where a distributed unit of work is meant, the term is used explicitly.

This chapter introduces a number of new terms, such as indoubt, initiator, agent, 
coordinator, subordinate, shunted, and resynchronization. These terms are explained as 
they occur in the text, with examples. You may also find it useful to refer to the 
CICS glossary. 

The rest of the chapter contains the following sections: 
v   “Syncpoint exchanges” gives examples of CICS syncpoint flows, and explains 

the terms used to describe them. 
v   “Recovery functions and interfaces” on page 293 describes the ways in which 

CICS can recover from a communication failure, and the commands you can use 
to control CICS recovery actions. Note that this and the next two sections apply 
only to MRO, IPIC, and ISC over SNA (APPC) parallel-session connections to 
other CICS Transaction Server for z/OS (CICS TS for z/OS) systems. 

v   “Initial and cold starts” on page 297 describes the effect of initial and cold starts 
on inter-connected systems, and how to decide when a cold start is possible. 

v   “Managing connection definitions” on page 300 describes how safely to modify 
or discard MRO, IPIC, and ISC over SNA (APPC) parallel-session connections to 
other CICS TS for z/OS systems. 

v   “Connections that do not fully support shunting” on page 302 describes 
exceptions that apply to connections other than MRO, IPIC, or ISC over SNA 
(APPC) parallel-session links to other CICS TS for z/OS systems. 

v   “Problem determination” on page 304 describes the messages that CICS may 
issue during a communication failure and recovery, and contains examples of 
how to resolve indoubt and resynchronization failures.

Syncpoint exchanges 
Consider the following example: 

Syncpoint example:  

An order-entry transaction is designed so that, when an order for an item is 
entered from a terminal: 

1.   An inventory file is queried and decremented by the order quantity. 

2.   An order for dispatch of the goods is written to an intrapartition transient 
data queue. 

3.   A synchronization point is taken to indicate the end of the current UOW.

In a single CICS system, the syncpoint causes steps 1 and 2 both to be committed. 

The same result is required if the inventory file is owned by a remote system and 
is accessed by means of, for example, CICS function shipping. This is achieved in 
the following way: 
1.   When the local transaction issues the syncpoint request, CICS sends a syncpoint 

request to the remote transaction (in this case, the CICS mirror transaction). 
2.   The remote transaction commits the change to the inventory file and sends a 

positive response to the local CICS system. 
3.   CICS commits the change to the transient data queue.

 

290 CICS TS for z/OS 4.1: Intercommunication Guide



During the period between the sending of the syncpoint request to the remote 
system and the receipt of the reply, the local system does not know whether the 
remote system has committed the change. This period is known as the indoubt 
period, as illustrated in Figure 86 on page 292. 

If the intersystem session fails before the indoubt period is reached, both sides 
back out in the normal way. After this period, both sides have committed their 
changes. If, however, the intersystem session fails during the indoubt period, the 
local CICS system cannot tell whether the remote system committed or backed out 
its changes. 

Syncpoint flows 
The ways in which syncpoint requests and responses are exchanged on intersystem 
conversations are defined in the APPC and LUTYPE6.1 architectures. CICS MRO 
and IPIC use the APPC recovery protocols. Although the formats of syncpoint 
flows for APPC and LUTYPE6.1 are different, the concepts of syncpoint exchanges 
are similar. 

In CICS, the flows involved in syncpoint exchanges are generated automatically in 
response to explicit or implicit SYNCPOINT commands issued by a transaction. 
However, a basic understanding of the flows that are involved can help you in the 
design of your application and give you an appreciation of the consequences of 
session or system failure during the syncpoint activity. For more information about 
these flows, see the CICS Distributed Transaction Programming Guide. 

Figures Figure 86 on page 292 through Figure 88 on page 293 show some examples 
of syncpoint flows. In the figures, the numbers in brackets, for example, (1), show 
the sequence of the actions in each flow. 

A CICS task may contain one or more UOWs. A local UOW that initiates syncpoint 
activity—by, for example, issuing an EXEC CICS SYNCPOINT or an EXEC CICS 
RETURN command—is called an initiator. A local UOW that receives syncpoint 
requests from an initiator is called an agent. The simplest case is shown in 
Figure 86 on page 292. There is a single conversation between an initiator and an 
agent. At the start of the syncpoint activity, the initiator sends a commit request to 
the agent. The agent commits its changes and responds with committed. The 
initiator then commits its changes, and the unit of work is complete. However, the 
agent retains recovery information about the UOW until its partner tells it (by 
means of a “forget” flow) that the information can be discarded. 

Between the commit flow and the committed flow, the initiator is indoubt, but the 
agent is not. The local UOW that is not indoubt is called the coordinator, because 
it coordinates the commitment of resources on both systems. The local UOW that is 
indoubt is called the subordinate, because it must obey the decision to commit or 
back out taken by its coordinator. 
 

 

Chapter 26. Recovery and restart in interconnected systems 291



Figure 87 shows a more complex example. Here, the agent UOW (Agent1) has a 
conversation with a third local UOW (Agent2). Agent1 initiates syncpoint activity 
on this latter conversation before it responds to the initiator. Agent2 commits first, 
then Agent1, and finally the initiator. Note that, in Figure 87, Agent1 is both the 
coordinator of the initiator and a subordinate of Agent2. 
 

Figure 88 on page 293 shows a more general case, in which the initiator UOW has 
more than one (directly-connected) agent. It must inform each of its agents that a 
syncpoint is being taken. It does this by sending a “prepare to commit” request to 
all of its agents except the last. The last agent is the agent that is not told to 
prepare to commit. 

Note: CICS chooses the last agent dynamically, at the time the syncpoint is issued. 
CICS external interfaces do not provide a means of identifying the last agent. 

Each agent that receives a “prepare” request responds with a “commit” request. 
When all such “prepare” requests have been sent and all the “commit” responses 
received, the initiator sends a “commit” request to its last agent. When this 
responds with a “committed” indication, the initiator then sends “committed” 
requests to all the other agents. 

Note that, in Figure 88 on page 293, the Initiator is both the coordinator of Agent1 
and a subordinate of Agent2. Agent2 is the last agent. 
 

Unique session
commit(1)

Initiator Agent

Subordinate Coordinator
in-doubt

committed(2)

forget

  

Figure 86. Syncpointing flows—unique session. In this distributed UOW, there is one 
coordinator and one subordinate. The coordinator is not indoubt.

Chained sessions - agent UOW has its own agent
commit(1)

Initiator Agent1 commit(2) Agent2

Subordinate Coordinator Subordinate Coordinator
in-doubt in-doubt

committed(3)
committed(4)

forget forget

  

Figure 87. Syncpointing flows—chained sessions. In this distributed UOW, Agent1 is both the coordinator of the 
initiator, and a subordinate of Agent2.

 

292 CICS TS for z/OS 4.1: Intercommunication Guide



Recovery functions and interfaces 
This section describes the functions and interfaces provided by CICS for recovery 
after a communication failure, or a CICS system failure. 

Important:  

Not all CICS releases provide the same level of support; this section describes 
MRO, IPIC, and ISC over SNA (APPC) parallel-session connections to other CICS 
Transaction Server for z/OS systems. Much of it applies also to other types of 
connection, but with some restrictions. For information about the restrictions for 
connections to non-CICS Transaction Server for z/OS systems, and for LU6.1 and 
APPC single-session connections, see “Connections that do not fully support 
shunting” on page 302. 

This section also assumes that each CICS system is restarted correctly (that is, that 
AUTO is coded on the START system initialization parameter). If an initial start is 
performed there are implications for connected systems; these are described in 
“Initial and cold starts” on page 297. 

Recovery functions 
If CICS is left indoubt about a unit of work due to a communication failure, it can 
do one of two things. 

How you can influence which of the two actions CICS takes is described in “The 
indoubt attributes of the transaction definition” on page 294. 
v   Suspend commitment of updated resources until the systems are next in 

communication. The unit of work is shunted. When communication is restored, 
the decision to commit or back out is obtained from the coordinator system; the 
unit of work is unshunted, and the updates are committed or backed out on the 
local system in a process called resynchronization. 

v   Take a unilateral decision to commit or back out local resources. In this case, the 
decision may be inconsistent with other systems; at the restoration of 

Multiple sessions - initiator has multiple agents
prepare(1)

Initiator Agent1

commit(2)
commit(3)

Agent2
(Last agent)

Subordinate Coordinator Subordinate
Coordinator in-doubt in-doubt

committed(4)

committed(5)
forget

forget

  

Figure 88. Syncpointing flows—multiple sessions. In this distributed UOW, the Initiator is both the coordinator of 
Agent1, and a subordinate of Agent2. Agent2 is the last agent, and is therefore not told to prepare to commit.

 

Chapter 26. Recovery and restart in interconnected systems 293



communications the decisions are compared and CICS warns of any 
inconsistency between neighboring systems (see “Messages that report CICS 
recovery actions” on page 304).

There is a trade-off between the two functions: the suspension of indoubt UOWs 
causes updated data to be locked against subsequent access; this disadvantage has 
to be weighed against the possibility of corruption of the consistency of data, 
which could result from taking unilateral decisions. When unilateral decisions are 
taken, there may be application-dependent processes, such as reconciliation jobs, 
that can restore consistency, but there is no general method that can be provided 
by CICS. 

Recovery interfaces 
This section summarizes the resource definition options, system programming 
commands, and CICS-supplied transactions that you can use to control and 
investigate units of work that fail during the indoubt period. 

For definitive information about defining resources, system programming 
commands, and CEMT transactions, see CICS Transaction Server for z/OS 
Resource Definition Guide, in the CICS Resource Definition Guide, CICS Transaction 
Server for z/OS System Programming Reference, in the CICS System Programming 
Reference manual, and CICS Transaction Server for z/OS Supplied Transactions, in 
the CICS Supplied Transactions manual, respectively. 

The indoubt attributes of the transaction definition 
You can control the action that CICS takes after a communication failure during 
the indoubt period by specifying indoubt attributes when you define the 
transaction, using the WAIT, WAITTIME, and ACTION options of the 
TRANSACTION definition. 

These options are honored when communication is lost with the coordinator and 
the UOW is in the indoubt period. 

WAIT({YES|NO})  
Specifies whether or not a unit of work is to wait, pending recovery from a 
failure that occurred after it had entered the indoubt period, before taking the 
action specified by ACTION. 

YES 
The UOW is to wait, pending recovery from the failure, to resolve its 
indoubt state and determine whether recoverable resources are to be 
backed out or committed. In other words, it is to be shunted. 

NO The UOW is not to wait. CICS takes immediately whatever action is 
specified on the ACTION attribute.

Note: The setting of the WAIT option can be overridden by other system 
settings—see the description of DEFINE TRANSACTION in TRANSACTION 
definition attributes, in the CICS Resource Definition Guide.

WAITTIME({00,00,00|dd,hh,mm})  
Specifies, if WAIT=YES, how long the transaction is to wait, before taking the 
action specified by ACTION. 

 You can use WAIT and WAITTIME to allow an opportunity for normal 
recovery and resynchronization to take place, while ensuring that a unit of 
work releases locks within a reasonable time. 

 

294 CICS TS for z/OS 4.1: Intercommunication Guide



ACTION({BACKOUT|COMMIT})  
Specifies the action to be taken when communication with the coordinator of 
the unit of work is lost, and the UOW has entered the indoubt period. 

BACKOUT 
All changes made to recoverable resources are backed out, and the 
resources are returned to the state they were in before the start of the 
UOW. 

COMMIT 
All changes made to recoverable resources are committed and the UOW is 
marked as completed.

 The action is dependent on the WAIT attribute. If WAIT specifies YES, 
ACTION has no effect unless the interval specified on the WAITTIME option 
expires before recovery from the failure. 

Whether you specify BACKOUT or COMMIT is likely to depend on the kinds 
of changes that the transaction makes to resources in the remote system—see 
“Specifying indoubt attributes—an example.”

Specifying indoubt attributes—an example:  

This simple example is an illustration of specifying the indoubt attributes of a 
transaction. 

Example:  

A transaction is given a part number; it checks the entry in a local file to see 
whether the part is in stock, decrements the quantity in stock by updating the 
stock file, and sends a record to a remote transient data queue to initiate the 
dispatch of the part. 

The update to the local file should take place only if the addition is made to the 
remote transient data (TD) queue, and the TD queue should only be updated if an 
update is made to the local file. The first step towards achieving this is to specify 
both the file and the TD queue as recoverable resources. This ensures 
synchronization of the changes to the resources (that is, both changes will either be 
backed out or committed) in all cases except for a session or system failure during 
the indoubt period of syncpoint processing. 

To deal with a communications failure—for example, a failure of the remote 
system—during the indoubt period, specify on the local transaction definition, 
WAIT(YES), ACTION(BACKOUT), and a WAITTIME long enough to allow the 
remote system to be recycled. This enables resynchronization to take place 
automatically, if communication is restored within the specified time limit. During 
the WAITTIME period, until resynchronization takes place, the local UOW is 
shunted, and a lock is held on the stock-file record. 

If communication is not restored within the time limit, changes made to the stock 
file on the local system are backed out. The addition to the TD queue on the 
remote system may or may not have been committed; this must be investigated 
after communication is restored. 

INQUIRE commands 
The CEMT and EXEC CICS interfaces provide a set of inquiry commands that you 
can use to investigate the execution of distributed units of work, and diagnose 
problems. 

 

Chapter 26. Recovery and restart in interconnected systems 295



Note: In the following list of commands, INQUIRE CONNECTION applies to MRO and 
ISC over SNA (APPC) connections. INQUIRE IPCONN applies to IPIC connections.
In summary, the commands are: 

INQUIRE {CONNECTION | IPCONN} RECOVSTATUS 
Use it to find out whether any resynchronization work is outstanding 
between the local system and the connected system. The returned CVDA 
values are: 

NORECOVDATA 
Neither side has recovery information outstanding. 

NOTAPPLIC 
This is not an IPIC, APPC parallel-session, nor a CICS-to-CICS 
MRO connection, and does not support two-phase commit 
protocols. 

NRS CICS does not have recovery outstanding for the connection, but 
the partner may have. 

RECOVDATA 
There are indoubt units of work associated with the connection, or 
there are outstanding resyncs awaiting FORGET on the connection. 
Resynchronization takes place when the connection next becomes 
active, or when the UOW is unshunted.

INQUIRE {CONNECTION | IPCONN} PENDSTATUS 
Use it to discover whether there are any UOWs for which 
resynchronization is impossible because of an initial start by the connected 
system. 

INQUIRE CONNECTION XLNSTATUS (APPC parallel-sessions only) 
Use it to discover whether the link is currently able to support syncpoint 
(synclevel 2) work. See “The exchange lognames process” on page 299 for 
more information.

Note:  XLNSTATUS is not applicable to IPCONNs.

INQUIRE UOW 
Use it to discover why a unit of work is waiting or shunted. If the reason 
is a connection failure (the WAITCAUSE option returns a CVDA value of 
CONNECTION), the SYSID and LINK options return the sysid and 
netname of the remote system that caused the UOW to wait or be shunted. 

 Note that INQUIRE UOW returns information about a local UOW—that is, 
for a distributed UOW it returns information only about the work required 
on the local system. You can assemble information about a distributed 
UOW by matching the network-wide identifier returned in the 
NETUOWID field against the identifiers of local UOWs on other systems. 
For an example of how to do this, see “Resolving a resynchronization 
failure” on page 312. 

INQUIRE UOWLINK 
This command allows you to inquire about the resynchronization needs of 
individual UOWs. Use it to discover information about connections 
involved in a distributed UOW. 

 For a local UOW, INQUIRE UOWLINK returns a list of tokens (UOW-links) 
representing connections to the systems that are involved in the distributed 
UOW. For each UOW-link, INQUIRE UOWLINK returns: 
v   The CONNECTION name 

 

296 CICS TS for z/OS 4.1: Intercommunication Guide



v   The resynchronization status of the connection 
v   Whether the connection is to a coordinator or a subordinate system.

For examples of the use of these commands to diagnose problems with distributed 
units of work, see “Problem determination examples” on page 308. 

SET {CONNECTION | IPCONN} command 
In exceptional cases, you may need to override the indoubt action normally 
controlled by the transaction definition. 

For example, a connected system may take longer than expected to restart. If the 
connected system is the coordinator of any UOWs, you can use the EXEC CICS or 
CEMT SET {CONNECTION | IPCONN} 
UOWACTION(FORCE|COMMIT|BACKOUT) command to force the UOWs to 
take a local, unilateral decision to commit or back out. 

Note: SET CONNECTION applies to MRO and ISC over SNA (APPC) connections. SET 
IPCONN applies to IPIC (IP) connections. 

The following commands are described in “The exchange lognames process” on 
page 299 and “Managing connection definitions” on page 300: 
v   SET {CONNECTION | IPCONN} PENDSTATUS 
v   SET {CONNECTION | IPCONN} RECOVSTATUS.

Initial and cold starts 
This section describes functions to manage the exceptional conditions that can 
occur in a transaction-processing network when one system performs an initial or 
cold start. 

Important:  

v   Except where otherwise stated, this section describes the effect of initial and cold 
starts on CICS Transaction Server for z/OS systems that are connected by MRO, 
IPIC, or ISC over SNA (APPC) parallel-session links. For information about the 
effects when other connections are used, see “Connections that do not fully 
support shunting” on page 302. 

v   In the rest of this chapter, the term “cold start” means a cold start in the CICS 
TS for z/OS meaning of the phrase (explained below). Where an “initial start” is 
intended, the term is used explicitly.

CICS Transaction Server for z/OS systems can be started without full recovery in 
two ways: 

Initial start 
An initial start may be performed in either of the following circumstances: 
v   'INITIAL' is specified on the START system initialization parameter. 
v   'AUTO' is specified on the START system initialization parameter, and the 

recovery manager utility program, DFHRMUTL, has been used to set the 
AUTOINIT autostart override in the global catalog.

On an initial start, all information about both local and remote resources is 
erased, and all resource definitions are reinstalled from the CSD or from CICS 
tables. 

An initial start should be performed only in exceptional circumstances. 
Examples of times when an initial start is appropriate are: 

 

Chapter 26. Recovery and restart in interconnected systems 297



v   When bringing up a new CICS system for the first time 
v   After a serious software failure, when the global catalog or system log has 

been corrupted.

Cold start 
A cold start may be performed in either of the following circumstances: 
v   'COLD' is specified on the START system initialization parameter. 
v   'AUTO' is specified on the START system initialization parameter, and the 

DFHRMUTL utility has been used to set the AUTOCOLD autostart override 
in the global catalog.

In CICS TS for z/OS, a cold start means that log information about local 
resources is erased, and resource definitions are reinstalled from the CSD or 
from CICS tables. However, resynchronization information relating to remote 
systems or to RMI-connected resource managers is preserved. The CICS log is 
scanned during startup, and information regarding unit of work obligations to 
remote systems, or to non-CICS resource managers (such as DB2®) connected 
through the RMI, is preserved. (That is, any decisions about the outcome of 
local UOWs, needed to allow remote systems or RMI resource managers to 
resynchronize their resources, are preserved.)

 For guidance information about the different ways in which CICS can be started, 
see the CICS Recovery and Restart Guide. 

Deciding when a cold start is possible 
At a cold start, information relating to intersystem recovery is read from the 
system log. 

Connected systems act as if the local system restarted normally, and resynchronize 
any outstanding work. Note that updates to local resources that were not fully 
committed or backed out during the previous run of CICS are not recovered at a 
cold start, even if the updates were part of a distributed unit of work. 

A cold start will not damage the integrity of data if all the following conditions are 
true: 
1.   Either 

v   The local system has no local recoverable resources (a TOR, for example), or 

v   The previous run of CICS was successfully quiesced (shutdown was normal 
rather than immediate) and no units of work were shunted. 

Note: On a normal shutdown, CICS issues messages to help you decide 
whether it can be cold started safely. If there are no shunted UOWs, CICS 
issues message DFHRM0204. If there are shunted UOWs, it issues message 
DFHRM0203—you should not perform a cold start.

2.   Attached resource managers that use the RMI are subsequently reconnected to 
allow resynchronization. 

3.   Connections to remote systems required for resynchronization are subsequently 
acquired. 
The cold-started system may or may not contain the same connection 
definitions that were in use at the previous shutdown. If autoinstalled 
connections are missing, the remote system may cause them to be recreated, in 
which case resynchronization takes place. If this does not happen—or if CEDA- 
or GRPLIST- installed definitions are missing—some action must be taken. See 
“Managing connection definitions” on page 300. 

 

298 CICS TS for z/OS 4.1: Intercommunication Guide



If you have defined the cold-started system to be part of a VTAM generic 
resource group, its connections can be correctly reestablished, provided the 
affinity relationship maintained by VTAM is still valid. However, the loss of 
autoinstalled definitions may make it difficult to end VTAM affinities, if this is 
required. See “APPC connections to and from VTAM generic resources” on 
page 301.

The DFHRMUTL utility returns information about the type of the last CICS 
shutdown which is of use in determining whether a cold restart is possible or not. 
For further details, see the CICS Operations and Utilities Guide. 

The exchange lognames process 
The protocols that control the communication of syncpointing commit and backout 
decisions depend on information in the system log. 

Each time CICS systems connect they exchange tokens called lognames. Lognames 
are verified during resynchronization; an exchange lognames failure means that the 
recovery protocol has been corrupted. A failure can take two forms: 
1.   A cold/warm log mismatch. A cold/warm log mismatch is caused by the loss 

of log data at one partner when the other has resynchronization work 
outstanding. 

Note: The term “cold start” is used in the SNA Peer Protocols manual, and by 
other products that communicate with CICS TS for z/OS to describe the cause 
of a loss of log data. 

“Cold start” is also used in CICS TS for z/OS messages and interfaces to 
describe the action of a partner system that results in a loss of log data for 
CICS TS for z/OS. 

However, in CICS TS for z/OS, a loss of log data for connected systems is 
caused by an initial start (not by a cold start), or by a SET CONNECTION 
NORECOVDATA command. 

2.   A lognames mismatch. A lognames mismatch is caused by a corruption of 
logname data. This can occur due to: 
a.   A system logic error 
b.   An operational error—for example, a failure to perform an initial start when 

upgrading from a back-level CICS release to CICS Transaction Server for 
z/OS.

The exchange lognames process is defined by the APPC architecture. For a full 
description of the concepts and physical flows, see the SNA Peer Protocols manual. 
MRO and IPIC use a similar protocol to APPC, with the important difference that 
after the erasure of log information at a partner, they allow new work to begin 
whatever the condition of existing work. On APPC synclevel 2 sessions, no further 
work is possible until action has been taken to delete any outstanding 
resynchronization work. 

After a partner system has been reconnected, you can use the INQUIRE 
CONNECTION PENDSTATUS command to check whether there is any 
outstanding resynchronization work that has been invalidated by the erasure of log 
information at the partner. A status of 'PENDING' indicates that there is. To check 
whether APPC connections are able to execute new synclevel 2 work, use the 

 

Chapter 26. Recovery and restart in interconnected systems 299



INQUIRE CONNECTION XLNSTATUS command. A status of 'XNOTDONE' 
indicates that the exchange lognames process has not completed successfully, 
probably because of a loss of log data. 

When CICS detects that a partner system has lost log data, the possible actions it 
can take are: 
1.   None. If there is no resynchronization work outstanding on the local system, 

the loss of log data has no effect. 
2.   Keep outstanding resynchronization work (which may include UOWs which 

were indoubt when communication was lost) for investigation. 
3.   Delete outstanding resynchronization work; any indoubt UOWs are committed 

or backed out according to the ACTION option of the associated transaction 
definition, and any decisions remembered for the partner are forgotten.

When there is outstanding resynchronization work, you can control (for IPIC, MRO 
and APPC connections) which of actions 2 or 3 CICS takes: 
v   Automatically, using the XLNACTION option of the connection definition. To 

delete resynchronization work as soon as the loss of log data by the partner is 
detected, use XLNACTION(FORCE). 

v   Manually, using the SET UOW and SET CONNECTION 
PENDSTATUS(NOTPENDING) commands.

Considerations for APPC connections 
The exchange lognames process affects only level 2 synchronization conversations. 
If it fails, synclevel 2 conversations are not allowed on the link until the failure is 
resolved by operator action. However, synclevel 0 and synclevel 1 traffic on the 
link is unaffected by the failure, and continues as normal. 

Managing connection definitions 
This section describes how to manage definitions of MRO, IPIC, and APPC 
parallel-session connections between CICS Transaction Server for z/OS systems. 

Important:  

For considerations that apply to other types of connection, see “Connections that 
do not fully support shunting” on page 302. 

Recovery information for a remote system is largely independent of the connection 
definition for the system. This allows you to manage (for example, modify) 
connection definitions independently of any recovery information that may be 
outstanding. However, in some cases the connection definition holds important 
information, which means that it must be kept, unmodified, until any recovery 
between the systems is complete. 

MRO and IPIC connections to CICS TS for z/OS systems 
For connections to other CICS Transaction Server for z/OS systems, the connection 
definition contains no recovery information. You can modify connections without 
regard to recovery, provided that the netname of the connection remains the same. 

If a connection definition is lost at a cold start, use the CEMT INQUIRE UOWLINK 
RESYNCSTATUS(UNCONNECTED) command to discover whether CICS retains 
any recovery information for the previously-connected system. This command will 

 

300 CICS TS for z/OS 4.1: Intercommunication Guide



tell you whether CICS contains any tokens (UOW-links) associating UOWs with 
the lost connection definition. If there are UOW-links present, you can either: 
v   Reinstall a suitable connection definition based on the UOW-link attributes and 

reestablish the connection. 
v   If you are certain that the associated UOW information is of no use, use the SET 

UOWLINK(xxxxxxx) ACTION(DELETE) command to delete the UOW-link. (You 
may need to use the SET UOW command to force an indoubt UOW to commit 
or back out before the UOW-links can be deleted.)

You can use the same UOWLINK commands if a connection has been discarded. 

Before discarding a connection, you should use the INQUIRE CONNECTION 
RECOVSTATUS command to check whether there is any recovery information 
outstanding. If there is recovery information outstanding, you should discard the 
connection only if there is no possibility of achieving a successful 
resynchronization with the partner. In this exceptional circumstance, you can use 
the SET CONNECTION UOWACTION command to force indoubt units of work before 
discarding the connection. 

APPC parallel-session connections to CICS TS for z/OS 
systems 

APPC parallel-session connections in a CICS Transaction Server for z/OS system 
that is not registered as a member of a VTAM generic resource contain no recovery 
information and can be managed in the same way as MRO connections to CICS TS 
for z/OS systems. 

APPC connections to and from VTAM generic resources 
If CICS is a member of a VTAM generic resource group, the local VTAM may have 
an affinity which directs any new binds from a partner to this same local system. 

You must not end the affinity held by VTAM if there is any possibility that 
resynchronization with the partner may be needed; if you do, binds (and 
subsequent resynchronization messages) may be directed to a different member of 
the generic resource. In most cases, it is safest to allow the APPC connection 
quiesce protocol to end the affinities automatically—see “APPC connection quiesce 
processing” on page 304. 

CICS prevents the execution of the SET CONNECTION ENDAFFINITY command 
if a logname has been received from the partner system, because this is the 
condition under which the partner may begin recoverable work and start 
resynchronization. The discarding of a connection is also prevented, because its 
loss means that the logname is no longer visible. If you intend ending affinities, 
you should do it before shutting down CICS before a cold start, because a cold start 
restores a logname without the associated connection. Ending affinities without 
removing the logname can cause exchange logname failures later. 

For further information about affinities and how to end them, see “Ending 
affinities” on page 133. 

Managing connection definitions 
For members of a generic resource, the connection definition is the only way (using 
the INQUIRE and SET CONNECTION RECOVSTATUS commands) of safely 
managing lognames and affinities. 

 

Chapter 26. Recovery and restart in interconnected systems 301



Connections can be discarded only if their recovery status (RECOVSTATUS) is 
NORECOVDATA. You can use the SET CONNECTION RECOVSTATUS command 
to set a connection's recovery status to NORECOVDATA if neither the local system 
nor the partner has any indoubt units of work dependent on the other. A simple 
and safe test is that neither system's connection to the other should have a status 
of RECOVSTATUS(RECOVDATA). If this test succeeds, you can issue SET 
CONNECTION NORECOVDATA on both, and SET CONNECTION 
ENDAFFINITY on the generic resource members. 

Connections that do not fully support shunting 
This section describes exceptions that apply, for example, to connections to 
back-level systems. 

The information in previous sections assumes that you are using MRO, IPIC, or 
APPC parallel-session connections to other CICS Transaction Server for z/OS 
systems—that is, that your network consists solely of current systems that fully 
support shunting. Much of the preceding information applies equally to other 
types of connection. 

LU6.1 connections 
This section describes the ways in which LU6.1 connections differ from APPC 
parallel-session connections and MRO connections to CICS TS for z/OS systems. 

Recovery functions and interfaces 

Some recovery functions are not available to LU6.1 connections: 
v   Shunting is not always supported. 
v   Some recovery-related commands and options are not supported. 
v   Resynchronization takes place on a session-by-session basis.

Restriction on shunting support 
There is no LU6.1 protocol by which one system can notify another system that 
a unit of work has been shunted. The only time when a UOW that includes an 
LU6.1 session can be shunted is when all the following are true: 
v   There is only one LU6.1 session in the local UOW. 
v   The LU6.1 session is the coordinator. 
v   The LU6.1 session has failed during the indoubt period. 
v   The LU6.1 session is to the last agent.

Under these conditions, the UOW can be shunted, because there is no need for 
the LU6.1 partner to be notified of the shunt. 

Under other conditions, a UOW that fails in the indoubt period, and that 
involves an LU6.1 session, takes a unilateral decision. If WAIT(YES) is specified 
on the transaction definition, it has no effect—WAIT(NO) is forced. 

Unsupported commands 
The following commands are not supported on LU6.1 connections: 
v   INQUIRE CONNECTION PENDSTATUS 
v   INQUIRE CONNECTION RECOVSTATUS 
v   INQUIRE CONNECTION XLNSTATUS.

Lack of SYNCPOINT ROLLBACK support 
There is no LU6.1 protocol by which one system can notify another that a 

 

302 CICS TS for z/OS 4.1: Intercommunication Guide



UOW has been backed out, without terminating the conversation. An attempt 
to issue an EXEC CICS SYNCPOINT ROLLBACK command in a UOW that 
includes an LU6.1 session results in an ASP8 abend. This abend cannot be 
handled by the application program. 

 Any resources in the UOW are backed out, but the transaction is not able to 
continue. 

Session-by-session resynchronization 
Unlike APPC parallel-session connections and CICS TS for z/OS-CICS TS for 
z/OS MRO connections, LU6.1 sessions are resynchronized one by one, as they 
are bound. Therefore, any UOW that requires resynchronization is not 
resynchronized until the session that failed is reconnected.

Initial and cold starts 

The LU6.1 connection definition contains sequence numbers used for recovery. If 
you perform an initial or cold start of CICS when there are LU6.1 connections on 
which recovery is outstanding, the sequence numbers are lost, and it becomes 
impossible for the partner systems to resynchronize their outstanding units of 
work. 

Lognames are not used. Therefore, the XLNACTION option of the CEDA DEFINE 
CONNECTION command is meaningless for LU6.1 connections. 

Managing connection definitions 

Recovery information for a remote system is not stored independently from the 
connection definition for the system—the LU6.1 connection definition contains 
sequence numbers used for recovery. Therefore you should not modify or discard 
connections for which recovery information may be outstanding. 

APPC connections to non-CICS TS for z/OS systems 
Some non-CICS Transaction Server for z/OS systems that can be connected to by 
APPC links do not support shunting, and always take unilateral action if a session 
failure occurs during the indoubt period. 

Inevitably, communication with a system that does not support shunting involves a 
risk of damage to data integrity through the taking of unilateral decisions. It is not 
possible for CICS to distinguish systems that do not support shunting from others 
that do support shunting. Therefore, it cannot preferentially select such a system to 
be the coordinator of a unit of work. 

Note the following: 
v   When unshunting takes place, there may be some delay before the unshunting is 

communicated to the non-CICS TS for z/OS system. 
v   Sessions may be unbound by CICS or its partner system as a normal part of the 

shunting and resynchronization process.

APPC single-session connections 
Normal syncpoint protocols cannot be used across a connection that is defined as 
SINGLESESS(YES). 

If function shipping is used (inbound or outbound), CICS communicates the 
outcome of a unit of work as described in Syncpointing (LU 6.2), in the CICS 

 

Chapter 26. Recovery and restart in interconnected systems 303



Family: Communicating from CICS on zSeries manual. However, resynchronization 
cannot be performed in the case of session failure. 

CICS issues a message to inform you of the shunting—but not the unshunting— of 
a unit of work. 

If the connection to which a function-shipped request is made is defined as remote 
(that is, it is owned by a remote region), the connection to the remote region must 
be defined as a parallel-session link, if recovery protocols with the resource-owning 
system are to be enabled. 

APPC connection quiesce processing 
When an APPC parallel-session connection with a CICS Transaction Server for 
z/OS region is shut down normally, CICS exchanges information with its partner 
to discover if there is any possibility that resynchronization is required when the 
connection is restarted. 

This exchange is known as the connection quiesce protocol (CQP). 

CICS determines that resynchronization is not required if all the following 
conditions are true: 
v   The connection is being shut down. 
v   There are no user sessions active (the CQP uses the SNASVCMG sessions). If the 

SNASVCMG sessions become inactive before the user sessions, the CQP will not 
take place. 

v   The CICS recovery manager domain has no record of outstanding syncpoint 
work or resynchronization work for the connection.

Once the CQP has completed, CICS ensures that no recoverable work can be 
initiated for the connection until a fresh logname exchange has taken place. 

If the CQP determines that resynchronization is not required, CICS: 
v   Sets the connection's recovery state to NORECOVDATA 
v   If CICS is a member of a generic resource group, ends any affinity held by 

VTAM and issues a message to say that the affinity has been ended.

If there is any failure of the CQP, CICS presumes that there is a possibility of 
resynchronization being necessary. You may use the procedures described here to 
determine if this is truly the case, and perform the necessary actions manually. 
Alternatively, you can reacquire the connection and release it again, to force CICS 
to re-attempt the CQP. 

Problem determination 
This section describes messages that report CICS recovery actions, and gives 
examples of how to resolve indoubt and resynchronization failures. The examples 
demonstrate how to use some of the commands previously discussed. 

Messages that report CICS recovery actions 
When a communications failure occurs, the connected systems might resolve their 
local parts of a distributed unit of work in ways that are inconsistent with each 
other. To warn of this possibility, when a CICS region loses communication with a 
partner, for each session on which the UOW is in the indoubt period, it issues a 
DFHRMxxxx message. 

 

304 CICS TS for z/OS 4.1: Intercommunication Guide



The message can be issued at the time of a session failure, a failure of the partner, 
or during emergency restart. 

When the connection has been reestablished, on each affected session the UOW is 
unshunted, its state is determined, and another message is issued. For LUTYPE6.1 
conversations, these messages might appear only on the initiator side. 

All messages contain the following information, which enables them to be 
correlated: 
v   The time and date of the original failure 
v   The transaction identifier and task number 
v   The netname of the remote system 
v   The operator identifier 
v   The operator terminal identifier 
v   The network-wide unit of work identifier 
v   The local unit of work identifier.

The following types of messages associated with intersystem session failure and 
recovery are produced: 
v    When contact is lost with the coordinator of the UOW. Messages are shown in 

Table 24 and Table 25 on page 306. 
v   When WAIT(YES) is specified on the transaction definition and shunting is 

possible. Messages are shown in Table 24. 
v   When WAIT(NO) is specified, or when shunting is not possible. Messages are 

shown in Table 25 on page 306. 
v   When contact is lost with a subordinate in the UOW. Messages are shown in 

Table 26 on page 307.

Full details are in CICS Messages and Codes. 

 Table 24. WAIT(YES) session failure messages. The failure is between the session and the 
coordinator of the UOW, WAIT(YES) is specified on the transaction definition and shunting 
is possible. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 1 Session failure 
DFHRM0106 Intersystem session failure. Resource 

changes are not committed or backed 
out until session recovery. 

Stage 1 
System failure or 
restart 

— — 

Stage 2 
Session recovery 
successful 

DFHRM0108 Intersystem session recovery. 
Suspended resource changes now being 
committed. 

Stage 2 
Session recovery 
successful 

DFHRM0109 Intersystem session recovery. 
Suspended resource changes now being 
backed out. 

Stage 2 
Wait time exceeded 
or SET UOW 
ACTION issued 

DFHRM0104 
DFHRM0105 

See next table. 

 

Chapter 26. Recovery and restart in interconnected systems 305



Table 24. WAIT(YES) session failure messages (continued). The failure is between the 
session and the coordinator of the UOW, WAIT(YES) is specified on the transaction 
definition and shunting is possible. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 2 

SET CONNECTION 
NOTPENDING or 
XLNACTION 
(FORCE) or 
NORECOVDATA 
issued 

DFHRM0125 
DFHRM0126 

Local resources committed or backed 
out. 

Stage 2 
Session recovery 
after a cold start of 
local resources. 

DFHRM0209 UOW backed out. 

Stage 2 
Session recovery 
after a cold start of 
local resources 

DFHRM0208 UOW committed. 

Stage 2 

Session recovery 
error; for example, 
partner cold-started 
1 

DFHRM0112 
DFHRM0113 
DFHRM0115 
DFHRM0116 
DFHRM0118 
DFHRM0119 
DFHRM0121 
DFHRM0122 

Intersystem recovery error. Local 
resource changes are committed or 
backed out. 

Key: 
1.   LU6.1 only

  

 Table 25. WAIT(NO) session failure messages. The failure is between the session and the 
coordinator of the UOW. WAIT(NO) is specified on the transaction definition or shunting is 
not possible. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 1 Session failure 

DFHRM0104 
DFHRM0105 

Intersystem session failure. Resource 
changes are being committed or backed 
out and might be out of sync with 
partner. 

Stage 1 
System failure or 
restart 

— — 

Stage 2 
Session recovery 
successful 

DFHRM0110 Intersystem session recovery. Resource 
updates found to be synchronized. 

Stage 2 
Session recovery 
successful 

DFHRM0111 Intersystem session recovery. Resource 
updates found to be out of sync. 

 

306 CICS TS for z/OS 4.1: Intercommunication Guide



Table 25. WAIT(NO) session failure messages (continued). The failure is between the 
session and the coordinator of the UOW. WAIT(NO) is specified on the transaction definition 
or shunting is not possible. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 2 

SET CONNECTION 
NOTPENDING or 
XLNACTION 
(FORCE) or 
NORECOVDATA 
issued 

DFHRM0127 SET NOTPENDING issued. 

Stage 2 

Session recovery 
error; for example, 
partner cold-started 
1 

DFHRM0112 
DFHRM0113 
DFHRM0115 
DFHRM0116 
DFHRM0118 
DFHRM0119 
DFHRM0121 
DFHRM0122 

Local resource changes committed or 
backed out. 

Key: 
1.   LU6.1 only

  

 Table 26. Subordinate session failure messages. The failure is between the session and a 
subordinate in the UOW. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 1 

UOW shunted 
because of failure of 
session to 
coordinator 

— — 

Stage 1 
Session failure DFHRM0107 Intersystem session failure. Notification 

of decision might not reach the remote 
system. 

Stage 1 
System failure or 
restart 

— — 

Stage 2 
Session recovery 
successful 

DFHRM0135 
DFHRM0148 
1 on page 
308 

Intersystem session recovery. Resource 
updates found to be synchronized. 

Stage 2 
Session recovery 
successful 

DFHRM0110 Intersystem session recovery. Resource 
updates found to be synchronized, after 
a unilateral decision on the remote 
system. 

 

Chapter 26. Recovery and restart in interconnected systems 307



Table 26. Subordinate session failure messages (continued). The failure is between the 
session and a subordinate in the UOW. 

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that 
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2 
applies to IPIC and APPC messages. 

Sequence of 
messages 

Circumstances Messages 
issued 

Meaning of messages 

Stage 2 
Session recovery 
successful 

DFHRM0111 
DFHRM0124 

Intersystem session recovery. Resource 
updates found to be out of sync, after a 
unilateral decision on the remote 
system. 

Stage 2 

SET CONNECTION 
NOTPENDING or 
XLNACTION 
(FORCE) or 
NORECOVDATA 
issued 

DFHRM0127 SET NOTPENDING issued. 

Stage 2 

Session recovery 
error; for example, 
partner cold-started 
2 

DFHRM0114 
DFHRM0117 
DFHRM0120 
DFHRM0123 

Intersystem session recovery error. 
Resource changes might be out of sync. 

Key: 
1.   DFHRM0124 and DFHRM0148 might occur without a preceding session failure message 

(DFHRM0107) or shunt. 
2.   LU6.1 only

  

Problem determination examples 
This section contains examples of how to resolve indoubt and resynchronization 
failures. 

Resolving an indoubt failure 
This section is an example of how to resolve a unit of work that fails during the 
indoubt period. 

It uses the following commands: 
v   CEMT INQUIRE TASK 
v   CEMT INQUIRE UOWENQ 
v   CEMT INQUIRE UOW 
v   CEMT INQUIRE UOWLINK 
v   CEMT INQUIRE CONNECTION

A user reports that their task has hung on region IYM51. A CEMT INQUIRE TASK 
command shows the following: 

  INQUIRE TASK 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Tas(0000061) Tra(RTD1) Fac(S254) Sus Ter Pri( 001 ) 
      Sta(TO) Use(CICSUSER) Uow(AB1DF09A54115600) Hty(ENQUEUE ) Hva(TDNQ    ) 
   Tas(0000064) Tra(CEMT) Fac(S255) Run Ter Pri( 255 ) 
      Sta(TO) Use(CICSUSER) Uow(AB1DF16E3B78B403)

 

The hanging task is 61, tranid RTD1. It is waiting on an enqueue for a transient 
data resource. A CEMT INQUIRE UOWENQ command shows: 

 

308 CICS TS for z/OS 4.1: Intercommunication Guide



INQUIRE UOWENQ 
  STATUS:  RESULTS 
   Uow(AB1DF0804B0F5801) Tra(RFS4) Tas(0000060) Ret Tsq Own 
      Res(RMLTSQ                    ) Rle(008) Enq(00000000) 
   Uow(AB1DF0804B0F5801) Tra(RFS4) Tas(0000060) Ret Dat Own 
      Res(DCXISCG.IYLX1.RMLFILE     ) Rle(021) Enq(00000000) 
   Uow(AB1DF0804B0F5801) Tra(RFS4) Tas(0000060) Act Tdq Own 
      Res(QILR                      ) Rle(004) Enq(00000000) 
   Uow(AB1DF0804B0F5801) Tra(RFS4) Tas(0000060) Act Tdq Own 
      Res(QILR                      ) Rle(004) Enq(00000000) 
   Uow(AB1DF09A54115600) Tra(RTD1) Tas(0000061) Act Tdq Wai 
      Res(QILR                      ) Rle(004) Enq(00000000)

 

In this instance, task 61 is the only waiter, and task 60 is the only owner, 
simplifying the task of identifying the enqueue owner. Task 60 owns one enqueue 
of type TSQUEUE, one of type DATASET, and two of type TDQ. These enqueues 
are owned on resources RMLTSQ, DCXISCG.IYLX1.RMLFILE and QILR 
respectively. 

The CEMT INQUIRE TASK screen shows that task 60 has ended. You can use the 
CEMT INQUIRE UOW command to return information about the status of units of 
work that are associated with tasks which have ended, as well as with tasks that 
are still active. 

  INQUIRE UOW 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Uow(AB1DD0FE5F219205) Inf Act Tra(CSSY) Tas(0000005) 
      Age(00002569)                          Use(CICSUSER) 
   Uow(AB1DD0FE5FEF9C00) Inf Act Tra(CSSY) Tas(0000006) 
      Age(00002569)                          Use(CICSUSER) 
   Uow(AB1DD0FE7FB82600) Inf Act Tra(CSTP) Tas(0000008) 
      Age(00002569)                          Use(CICSUSER) 
   Uow(AB1DD98323E1C005) Inf Act Tra(CSNC) Tas(0000018) 
      Age(00000282)                          Use(CICSUSER) 
   Uow(AB1DF0804B0F5801) Ind Shu Tra(RFS4) Tas(0000060) 
      Age(00002699) Ter(S255) Netn(IGCS255 ) Use(CICSUSER) Con Lin(IYM52   ) 
   Uow(AB1DF09A54115600) Inf Act Tra(RTD1) Tas(0000061) 
      Age(00002673) Ter(S254) Netn(IGCS254 ) Use(CICSUSER) 
   Uow(AB1DF0B309126800) Inf Act Tra(CSNE) Tas(0000021) 
      Age(00002647)                          Use(CICSUSER) 
   Uow(AB1DF16E3B78B403) Inf Act Tra(CEMT) Tas(0000064) 
      Age(00002451) Ter(S255) Netn(IGCS255 ) Use(CICSUSER)

 

The CEMT INQUIRE UOW command can be filtered so that a UOW for a 
particular task is displayed. For example, CEMT INQUIRE UOW TASK(60) shows: 

  INQUIRE UOW TASK(60) 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Uow(AB1DF0804B0F5801) Ind Shu Tra(RFS4) Tas(0000060) 
      Age(00002699) Ter(S255) Netn(IGCS255 ) Use(CICSUSER) Con Lin(IYM52   )

 

Note: The CEMT INQUIRE UOW command can also be filtered using a wildcard 
as a UOW filter. For example, CEMT INQUIRE UOW(*5801) would return 
information about UOW AB1DF0804B0F5801 only. 

In order to see more information for a particular UOW, position the cursor 
alongside the UOW and press ENTER: 

 

Chapter 26. Recovery and restart in interconnected systems 309



INQUIRE UOW 
  RESULT - OVERTYPE TO MODIFY 
    Uow(AB1DF0804B0F5801) 
    Uowstate( Indoubt ) 
    Waitstate(Shunted) 
    Transid(RFS4) 
    Taskid(0000060) 
    Age(00002801) 
    Termid(S255) 
    Netname(IGCS255) 
    Userid(CICSUSER) 
    Waitcause(Connection) 
    Link(IYM52) 
    Sysid(ISC2) 
    Netuowid(..GBIBMIYA.IGCS255 .0......)

 

The UOW in question is AB1DF0804B0F5801. The Uowstate is Shunted, which 
means that syncpoint processing has been deferred and locks are retained until 
resource integrity can be ensured. In this case, the UOW is shunted Indoubt, 
which means that task 60 failed during syncpoint processing while in the indoubt 
window. 

The reason for the UOW being shunted is given by Waitcause—in this case, it is 
Connection. The UOW has been shunted due to a failure of connection ISC2. The 
associated Link (or netname) for the connection is IYM52. 

A CEMT INQUIRE UOWLINK command shows information about connections 
involved in distributed UOWs: 

    INQUIRE UOWLINK 
    STATUS:  RESULTS 
     Uowl(02EC0011) Uow(AB1DF0804B0F5801) Con Lin(IYM52   ) 
        Coo Appc Una Sys(ISC2)                Net(..GBIBMIYA.IGCS255 .0......)

 

To see more information for the Link, position the cursor alongside the UOW and 
press ENTER: 

  INQUIRE UOWLINK 
  RESULT 
    Uowlink(02EC0011) 
    Uow(AB1DF0804B0F5801) 
    Type(Connection) 
    Link(IYM52) 
    Action(              ) 
    Role(Coordinator) 
    Protocol(Appc) 
    Resyncstatus(Unavailable) 
    Sysid(ISC2) 
    Rmiqfy() 
    Netuowid(..GBIBMIYA.IGCS255 .0......)

 

In this example, we can see that the connection ISC2 to system IYM52 is the 
syncpoint Coordinator for this UOW. The Resyncstatus is Unavailable, which 
means that the connection is not currently acquired. 

A CEMT INQUIRE CONNECTION command confirms our findings: 

 

310 CICS TS for z/OS 4.1: Intercommunication Guide



I INQUIRE CONNECTION 
    STATUS:  RESULTS - OVERTYPE TO MODIFY 
     Con(ISC2) Net(IYM52   )     Ins Rel Vta Appc         Rec 
     Con(ISC4) Net(IYM54   )     Ins Acq Vta Appc     Xok Unk 
     Con(ISC5) Net(IYM55   )     Ins Acq Vta Appc     Xok Unk

 

To see more information for connection ISC2, position the cursor alongside the 
connection and press ENTER: 

  INQUIRE CONNECTION 
  RESULT 
    Connection(ISC2) 
    Netname(IYM52) 
    Pendstatus( Notpending ) 
    Servstatus( Inservice ) 
    Connstatus( Released ) 
    Accessmethod(Vtam) 
    Protocol(Appc) 
    Purgetype(              ) 
    Xlnstatus() 
    Recovstatus( Recovdata ) 
    Uowaction(              ) 
    Grname() 
    Membername() 
    Affinity(              ) 
    Remotesystem() 
    Rname() 
    Rnetname()

 

This shows that the connection ISC2 is Released with Recovstatus Recovdata, 
indicating that resynchronization is outstanding for this connection. 

At this stage, if it is possible to acquire the connection to system IYM52, 
resynchronization will take place automatically, UOW AB1DF0804B0F5801 will be 
unshunted and its enqueues will be released, allowing task 61 to complete. 
However, if it is not possible to acquire the connection, you may decide to unshunt 
the UOW and override normal resynchronization. To decide whether to commit or 
backout the UOW, you need to inquire on the associated UOW on system IYM52. 
A CEMT INQUIRE UOW command on system IYM52 shows: 

    INQUIRE UOW 
    STATUS:  RESULTS - OVERTYPE TO MODIFY 
     Uow(AB1DD01221BA6E01) Inf Act Tra(CSSY) Tas(0000005) 
        Age(00003191)                          Use(CICSUSER) 
     Uow(AB1DD0122276C201) Inf Act Tra(CSSY) Tas(0000006) 
        Age(00003191)                          Use(CICSUSER) 
     Uow(AB1DD01248A7B005) Inf Act Tra(CSTP) Tas(0000008) 
        Age(00003191)                          Use(CICSUSER) 
     Uow(AB1DD9057B8DD800) Inf Act Tra(CSNC) Tas(0000018) 
        Age(00000789)                          Use(CICSUSER) 
     Uow(AB1DF0805E76B400) Com Wai Tra(CSM3) Tas(0000079) 
        Age(00003003) Ter(-AC3) Netn(IYM51   ) Use(CICSUSER) Wai 
     Uow(AB1DF0B2FDD36400) Inf Act Tra(CSNE) Tas(0000019) 
        Age(00003024)                          Use(CICSUSER) 
     Uow(AB1DF15502238000) Inf Act Tra(CEMT) Tas(0000086) 
        Age(00002853) Ter(S25C) Netn(IGCS25C ) Use(CICSUSER)

 

For transactions started at a terminal, the CEMT INQUIRE UOW command can be 
filtered using Netuowid, so that only UOWs associated with transactions executed 
from a particular terminal are displayed. In this case, task 60 on system IYM51 was 
executed at terminal S255. The Netuowid of UOW AB1DF0804B0F5801 on system 
IYM51 contains the luname of terminal S255. 

 

Chapter 26. Recovery and restart in interconnected systems 311



Because Netuowids are identical for all UOWs which are connected within a single 
distributed unit of work, the Netuowid is a useful way of tying these UOWs 
together. In this example, the command CEMT INQUIRE UOW 
NETUOWID(*S255*) filters the CEMT INQUIRE UOW command as follows: 

    INQUIRE UOW NETUOWID(*S255*) 
    STATUS:  RESULTS - OVERTYPE TO MODIFY 
     Uow(AB1DF0805E76B400) Com Wai Tra(CSM3) Tas(0000079) 
        Age(00003003) Ter(-AC3) Netn(IYM51   ) Use(CICSUSER) Wai

 

To see more information for UOW AB1DF0805E76B400, position the cursor 
alongside the UOW and press ENTER: 

  INQUIRE UOW 
  RESULT - OVERTYPE TO MODIFY 
    Uow(AB1DF0805E76B400) 
    Uowstate( Commit ) 
    Waitstate(Waiting) 
    Transid(CSM3) 
    Taskid(0000079) 
    Age(00003003) 
    Termid(-AC3) 
    Netname(IYM51  ) 
    Userid(CICSUSER) 
    Waitcause(Waitforget) 
    Link(     ) 
    Sysid(    ) 
    Netuowid(..GBIBMIYA.IGCS255 .0......)

 

We can see that UOW AB1DF0805E76B400 is associated with a mirror task used in 
function shipping. The Uowstate Commit means that the UOW has been 
committed and the Waitstate Waiting means that it is waiting because the decision 
has not been communicated to IYM51. This allows us safely to commit the shunted 
UOW on system IYM51, in the knowledge that resource updates will be 
synchronous with those on IYM52 for this distributed unit of work. You can use 
the CEMT SET UOW command to commit the shunted UOW. Once the shunted 
UOW is committed, its enqueues are released and task 61 is allowed to continue. 

Another possible scenario could be that IYM52 is not available. If it is not practical 
to wait for IYM52 to become available and you are prepared to accept the risk to 
data integrity, you can use the CEMT SET CONNECTION command to commit, 
backout, or force all UOWs that have failed indoubt due to the failure of 
connection ISC2. 

In this example, transaction RTD1 was suspended on an ENQUEUE for a transient 
data queue. An active lock for the queue was owned by UOW AB1DF0804B0F5801, 
which had failed indoubt. To avoid tasks being suspended in this way, you could 
define the transient data queue with the WAITACTION option set to REJECT (the 
default WAITACTION). If you do this, an indoubt failure of a task updating the 
queue results in a retained lock being held by the shunted UOW. Requests for the 
retained lock are then rejected with the LOCKED condition. 

For detailed information about CEMT commands, see CEMT master terminal, in 
the CICS Supplied Transactions manual. 

Resolving a resynchronization failure 
This section is an example of how to resolve a resynchronization failure. 

 

312 CICS TS for z/OS 4.1: Intercommunication Guide



This section is an example of how to resolve a resynchronization failure. It uses the 
following commands: 
v   CEMT INQUIRE CONNECTION 
v   CEMT INQUIRE UOWLINK 
v   CEMT INQUIRE UOW 
v   CEMT INQUIRE UOWENQ 
v   SET CONNECTION NOTPENDING.

A user has reported that their transaction on system IYLX1 (which involves 
function shipping requests to system IYLX4) is failing with a 'SYSIDERR'. A CEMT 
INQUIRE CONNECTION command on system IYLX1 shows the following: 
 

To see more information about this connection, put the cursor on the ISC4 line and 
press ENTER—see Figure 90. 
 

Although the Connstatus of connection ISC4 is Acquired, the Xlnstatus is 
Xnotdone. The exchange lognames (XLN) flow for this connection has not 
completed successfully. (When CICS systems connect they exchange lognames. 
These lognames are verified before resynchronization is attempted, and an 
exchange lognames failure means that resynchronization is not possible.) For 
function shipping, a failure for the connection causes a SYSIDERR. Synchronization 
level 2 conversations are not allowed on this connection until lognames are 
successfully exchanged. (This restriction does not apply to MRO connections.) 

The reason for the exchange lognames failure is reported in the CSMT log. A 
failure on a CICS Transaction Server for z/OS system can be caused by: 
v   An initial start (START=INITIAL) of the CICS TS for z/OS system, or of a 

partner. 

  INQUIRE CONNECTION 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Con(ISC2) Net(IYLX2   )     Ins Rel Vta Appc         Unk 
   Con(ISC4) Net(IYLX4   ) Pen Ins Acq Vta Appc     Xno Unk 
   Con(ISC5) Net(IYLX5   )     Ins Acq Vta Appc     Xok Unk

 
Figure 89. CEMT INQUIRE CONNECTION—connections owned by system IYLX1

  INQUIRE CONNECTION 
  RESULT - OVERTYPE TO MODIFY 
    Connection(ISC4) 
    Netname(IYLX4) 
    Pendstatus( Pending ) 
    Servstatus( Inservice ) 
    Connstatus( Acquired ) 
    Accessmethod(Vtam) 
    Protocol(Appc) 
    Purgetype(              ) 
    Xlnstatus(Xnotdone) 
    Recovstatus( Nrs ) 
    Uowaction(              ) 
    Grname() 
    Membername() 
    Affinity(              ) 
    Remotesystem() 
    Rname() 
    Rnetname()

 
Figure 90. CEMT INQUIRE CONNECTION—details of connection ISC4

 

Chapter 26. Recovery and restart in interconnected systems 313



Note: A cold start (START=COLD) of a CICS TS for z/OS system preserves 
resynchronization information (including the logname) and does not, therefore, 
cause an exchange lognames failure. 

v   Use of the CEMT SET CONNECTION NORECOVDATA command. 
v   A system logic or operational error.

The Pendstatus for connection ISC4 is Pending, which means that there is 
resynchronization work outstanding for the connection; this work cannot be 
completed because of the exchange lognames failure. 

At this stage, if we were not concerned about loss of synchronization, we could 
force all indoubt UOWs to commit or back out by issuing the SET CONNECTION 
NOTPENDING command. However, there are commands that allow us to 
investigate the outstanding resynchronization work that exists before we clear the 
pending condition. 

You can use a CEMT INQUIRE UOWLINK command to display information about 
UOWs that require resynchronization with system IYLX4: 
 

To see more information for each UOW-link, press enter alongside it. For example, 
the expanded information for UOW-link 016C0005 shows the following: 
 

The Resyncstatus of Coldstart confirms that system IYLX4 has been started with a 
new logname. The Role for this UOW-link is shown as Coordinator, which means 
that IYLX4 is the syncpoint coordinator. 

You could now use a CEMT INQUIRE UOW LINK(IYLX4) command to show all 
UOWs that are indoubt and which have system IYLX4 as the coordinator system: 
 

  INQUIRE UOWLINK LINK(IYLX4) 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Uowl(016C0005) Uow(ABD40B40C1334401) Con Lin(IYLX4   ) 
      Coo Appc Col Sys(ISC4)            Net(..GBIBMIYA.IYLX150 M. A....) 
   Uowl(01680005) Uow(ABD40B40C67C8201) Con Lin(IYLX4   ) 
      Coo Appc Col Sys(ISC4)            Net(..GBIBMIYA.IYLX151 M. F@b..) 
   Uowl(016D0005) Uow(ABD40B40DA5A8803) Con Lin(IYLX4   ) 
      Coo Appc Col Sys(ISC4)            Net(..GBIBMIYA.IYLX156 M. .!h..)

 
Figure 91. CEMT INQUIRE UOWLINK—UOWs that require resynchronization with system IYLX4

  I UOWLINK LINK(IYLX4) 
  RESULT - OVERTYPE TO MODIFY 
    Uowlink(016C0005) 
    Uow(ABD40B40C1334401) 
    Type(Connection) 
    Link(IYLX4) 
    Action(              ) 
    Role(Coordinator) 
    Protocol(Appc) 
    Resyncstatus(Coldstart) 
    Sysid(ISC4) 
    Rmiqfy() 
    Netuowid(..GBIBMIYA.IYLX150 M. A....)

 
Figure 92. CEMT INQUIRE UOWLINK—detailed information for UOW-link 016C0005

 

314 CICS TS for z/OS 4.1: Intercommunication Guide



To see more information for each indoubt UOW, press enter on its line. For 
example, the expanded information for UOW ABD40B40C1334401 shows the 
following: 
 

This UOW cannot be resynchronized by system IYLX4—its status is shown as 
Indoubt, because IYLX4 does not know whether the associated UOW that ran on 
IYLX4 committed or backed out. 

You can use the CEMT INQUIRE UOWENQ command to display the resources 
that have been locked by all shunted UOWs (those that own retained locks): 
 

You can filter the INQUIRE UOWENQ command so that only enqueues that are 
owned by a particular UOW are displayed. For example, to filter for enqueues 
owned by UOW ABD40B40C1334401: 
 

  INQUIRE UOW LINK(IYLX4) 
  STATUS:  RESULTS - OVERTYPE TO MODIFY 
   Uow(ABD40B40C1334401) Ind Shu Tra(RFS1) Tas(0000674) 
      Age(00003560) Ter(X150) Netn(IYLX150 ) Use(CICSUSER) Con Lin(IYLX4   ) 
   Uow(ABD40B40C67C8201) Ind Shu Tra(RFS1) Tas(0000675) 
      Age(00003465) Ter(X151) Netn(IYLX151 ) Use(CICSUSER) Con Lin(IYLX4   ) 
   Uow(ABD40B40DA5A8803) Ind Shu Tra(RFS1) Tas(0000676) 
      Age(00003462) Ter(X156) Netn(IYLX156 ) Use(CICSUSER) Con Lin(IYLX4   )

 
Figure 93. CEMT INQUIRE UOW LINK(IYLX4)—all UOWs that have IYLX4 as the coordinator

  INQUIRE UOW LINK(IYLX4) 
  RESULT - OVERTYPE TO MODIFY 
    Uow(ABD40B40C1334401) 
    Uowstate( Indoubt ) 
    Waitstate(Shunted) 
    Transid(RFS1) 
    Taskid(0000674) 
    Age(00003906) 
    Termid(X150) 
    Netname(IYLX150) 
    Userid(CICSUSER) 
    Waitcause(Connection) 
    Link(IYLX4) 
    Sysid(ISC4) 
    Netuowid(..GBIBMIYA.IYLX150 M. A....)

 
Figure 94. CEMT INQUIRE UOW LINK(IYLX4)—detailed information for UOW ABD40B40C1334401

  INQUIRE UOWENQ OWN RETAINED 
  STATUS:  RESULTS 
   Uow(ABD40B40C1334401) Tra(RFS1) Tas(0000674) Ret Tsq Own 
      Res(RFS1X150                  ) Rle(008) Enq(00000008) 
   Uow(ABD40B40C67C8201) Tra(RFS1) Tas(0000675) Ret Tsq Own 
      Res(RFS1X151                  ) Rle(008) Enq(00000008) 
   Uow(ABD40B40DA5A8803) Tra(RFS1) Tas(0000676) Ret Tsq Own 
      Res(RFS1X156                  ) Rle(008) Enq(00000008)

 
Figure 95. CEMT INQUIRE UOWENQ—resources locked by all shunted UOWs

  INQUIRE UOWENQ OWN UOW(*4401) 
  STATUS:  RESULTS 
   Uow(ABD40B40C1334401) Tra(RFS1) Tas(0000674) Ret Tsq Own 
      Res(RFS1X150                  ) Rle(008) Enq(00000008)

 
Figure 96. CEMT INQUIRE UOWENQ—resources locked by UOW ABD40B40C1334401

 

Chapter 26. Recovery and restart in interconnected systems 315



To see more information for this UOWENQ, press enter alongside it: 
 

With knowledge of the application, it may now be possible to decide whether 
updates to the locked resources should be committed or backed out. In the case of 
UOW ABD40B40C1334401, the locked resource is the temporary storage queue 
RFS1X150. This resource has an ENQFAILS value of 8, which is the number of 
tasks that have received the LOCKED response due to this enqueue being held in 
retained state. 

You can use the SET UOW command to commit, back out, or force the 
uncommitted updates made by the shunted UOWs. Next, you must use the SET 
CONNECTION(ISC4) NOTPENDING command to clear the pending condition 
and allow synchronization level 2 conversations (including the function shipping 
requests which were previously failing with SYSIDERR). 

You can use the XLNACTION option of the CONNECTION definition to control 
the effect of an exchange lognames failure. In this example, the XLNACTION for 
the connection ISC4 is KEEP. This meant that: 
v   The shunted UOWs on system IYLX1 were kept following the cold/warm log 

mismatch with IYLX4. 
v   The APPC connection between IYLX1 and IYLX4 could not be used for function 

shipping requests until the pending condition was resolved.

An XLNACTION of FORCE for connection ISC4 would have caused the SET 
CONNECTION NOTPENDING command to have been issued automatically when 
the cold/warm log mismatch occurred. This would have forced the shunted UOWs 
to commit or back out, according to the ACTION option of the associated 
transaction definition. The connection ISC4 would then not have been placed into 
Pending status. However, setting XLNACTION to FORCE allows no investigation 
of shunted UOWs following an exchange lognames failure, and therefore 
represents a greater risk to data integrity than setting XLNACTION to KEEP. 

  INQUIRE UOWENQ OWN UOW(*4401) 
  RESULT 
    Uowenq 
    Uow(ABD40B40C1334401) 
    Transid(RFS1) 
    Taskid(0000674) 
    State(Retained) 
    Type(Tsq) 
    Relation(Owner) 
    Resource(RFS1X150) 
    Rlen(008) 
    Enqfails(00000008) 
    Netuowid(..GBIBMIYA.IYLX150 M. A....) 
    Qualifier() 
    Qlen(000)

 
Figure 97. CEMT INQUIRE UOWENQ—detailed information for UOWENQ ABD40B40C1334401

 

316 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 27. Intercommunication and XRF 

For further information about the extended recovery facility (XRF) of CICS 
Transaction Server for z/OS, see the CICS/ESA 3.3 CICS XRF Guide. This chapter 
looks at those aspects of XRF that apply to ISC and MRO sessions. 

For more details of the link definitions mentioned in this chapter, refer to 
Chapter 13, “How to define connections to remote systems,” on page 147. 

MRO and ISC sessions are not XRF-capable because they cannot have backup 
sessions to the alternate CICS system. 

You can use the AUTOCONNECT option in your link definitions to cause CICS to 
try to reestablish the sessions following a takeover by the alternate CICS system. 

Also, the bound or unbound status of some ISC session types can be tracked. In 
these cases, CICS can try to reacquire bound sessions irrespective of the 
AUTOCONNECT specification. 

In all cases, the timing of the attempt to reestablish sessions is controlled by the 
AUTCONN system initialization parameter. For information about system 
initialization parameters, see Specifying CICS system initialization parameters, in 
the CICS System Definition Guide. 

The rest of this chapter contains the following topics: 
v   “MRO sessions” 
v   “LUTYPE6.1 sessions” 
v   “Single-session APPC devices” 
v   “Parallel APPC sessions” on page 318 
v   “Effect on application programs” on page 318

MRO sessions 
The status of MRO sessions cannot be tracked. Following a takeover by the 
alternate CICS system, CICS tries to reestablish MRO sessions according to the 
value specified for the INSERVICE option of the CONNECTION definition. 

LUTYPE6.1 sessions 
Following a takeover, CICS tries to reestablish LUTYPE6.1 sessions in either of the 
following cases. 
1.   The AUTOCONNECT option of the SESSIONS definition specifies YES. 
2.   The sessions are being tracked, and are bound when the takeover occurs. The 

status of LUTYPE6.1 sessions is tracked unless RECOVOPTION(NONE) is 
specified in the SESSIONS definition.

Single-session APPC devices 
Following a takeover, CICS tries to reestablish single APPC sessions in the 
following cases. 

 

© Copyright IBM Corp. 1977, 2011 317



1.   The AUTOCONNECT option of the SESSIONS or TYPETERM definition 
specifies YES. 

2.   The session is being tracked, and is bound when the active CICS fails. Single 
APPC sessions are tracked unless RECOVOPTION(NONE) is specified in the 
SESSIONS or the TYPETERM definition (depending upon which form of 
definition is being used). Although RECOVOPTION has five possible values, 
for ISC there is a choice between NONE (no tracking) and any one of the other 
options (tracking).

Parallel APPC sessions 
Following a takeover, CICS tries to reestablish the LU services manager sessions in 
the following cases: 
v   The AUTOCONNECT option of the CONNECTION definition specifies YES or 

ALL. 
v   The sessions are being tracked, and are bound when the active CICS fails. Only 

the LU services manager sessions (SNASVCMG) can be tracked in this case; 
tracking is not available for user sessions.

As soon as the LU services manager sessions are reestablished, CICS tries to 
establish the sessions for any mode group that specifies autoconnection. 

Effect on application programs 
To application programs that are using the intercommunication facilities, a 
takeover in the remote CICS system is indistinguishable from a session failure. 

 

318 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 28. Intercommunication and VTAM persistent 
sessions 

The use of VTAM persistent sessions support has some implications for 
intersystem communication. 

For definitive information about CICS support for VTAM persistent sessions, see 
Recovery with VTAM persistent sessions , in the CICS Recovery and Restart Guide. 

The use of VTAM persistent sessions has implications for DTP applications that 
use the APPC protocol. These implications are described in Effect of VTAM 
persistent sessions support for DTP conversations on APPC sessions, in the CICS 
Distributed Transaction Programming Guide. 
Related concepts 

Chapter 13, “How to define connections to remote systems,” on page 147
You can define and manage different types of connections between CICS regions or 
from CICS regions to non-CICS systems.

Comparison of persistent sessions support and XRF 
XRF allows an alternate, partially initialized CICS system to take over control from 
an active CICS system that has failed. The use of VTAM persistent sessions 
support provides an alternative to XRF. 

Persistent sessions allow you to restart a failed CICS in place, without the need for 
network flows to rebind CICS sessions. Note that you cannot specify both XRF and 
CICS persistent session support for the same system. 

XRF provides availability of the system, through active and alternate systems, and 
availability for the user, through availability of the system and exploitation of 
backup sessions. Active and alternate pairs of systems require their own versions 
of some data sets, for example, auxiliary trace and dump data sets. 

Persistent sessions support provides availability of the system, through restart in 
place of one system, and availability for the end user, through availability of the 
system and persistent sessions. Only one set of data sets, and only one system, are 
required. Persistent sessions support has the following advantages over XRF: 
v   It supports all session types except MRO, LU6.1, and LU0 pipeline sessions. XRF 

does not support local terminals, MRO, or ISC (LU6.1 or LU6.2) sessions. 
v   It is easier to install and manage than XRF. It requires only a single system.

Single-node persistent sessions support does not retain sessions after a VTAM or 
z/OS failure. Multinode persistent sessions support does have this capability. If 
you do not have the appropriate facilities for multinode persistent sessions 
support, and you need to ensure rapid restarts after these types of failure, you can 
use XRF rather than persistent sessions. 

 

© Copyright IBM Corp. 1977, 2011 319



Interconnected CICS environment, recovery and restart 
CICS systems can be interconnected using MRO, LU6.1, or LU6.2 connections and 
sessions. Recovery and restart behavior varies depending on the session type and 
whether or not VTAM persistent sessions support is used. 

MRO sessions 

MRO connections cannot persist across CICS failures and subsequent emergency 
restarts. 

LU6.1 sessions 

If a CICS region fails in a multisystem environment, all the LU6.1 sessions that are 
connected to it are held in recovery pending state until it is restarted with an 
emergency restart or until the expiry of the persistent session delay interval. In 
either case, the LU6.1 sessions are then unbound. They need to be reacquired 
before they can be used again. 

Slightly different symptoms of the CICS failure are presented to the systems 
programmer or operator, depending on whether persistent sessions support is 
used. In systems without persistent sessions support, all the LU6.1 sessions unbind 
immediately after the failure. 

In a system with persistent session support, the LU6.1 sessions are not unbound 
until the emergency restart, if this occurs within the persistent session delay 
interval, or the expiry of the persistent session delay interval. Consequently, these 
sessions might take a longer time to be unbound. 

LU6.2 sessions 

LU6.2 sessions that connect different CICS systems are capable of persistence 
across the failure of one or more of the systems and a subsequent emergency 
restart within the persistent session delay interval. 

However, these sessions are unbound in certain circumstances, even if persistent 
sessions are supported in your system. The following sessions are unbound after a 
CICS failure and emergency restart, even if you have defined them to be persistent: 
v   Sessions for which no catalog entry is found: 

–   Autoinstalled LU6.2 parallel sessions. 
–   Autoinstalled LU6.2 single sessions initiated by BIND requests. 
–   Autoinstalled LU6.2 single sessions initiated by VTAM CINIT requests, if the 

AIRDELAY system initialization parameter is set to zero. (AIRDELAY 
specifies the interval that elapses after an emergency restart before 
autoinstalled terminal entries that are not in session are deleted.) 
In other words, the only autoinstalled LU6.2 sessions that are not unbound 
are single sessions initiated by CINIT requests, and then only if AIRDELAY is 
greater than zero.

v   All sessions on an LU6.2 connection to a failing TOR, where, on one or more of 
the sessions, an AOR has function-shipped an ATI request to the TOR, because 
the request is associated with a terminal owned by the TOR. ATI-initiated 
transaction routing is described in “Traditional routing of transactions started by 
ATI” on page 69. 

 

320 CICS TS for z/OS 4.1: Intercommunication Guide



v   All sessions on an LU6.2 connection, where, on one or more of the sessions, 
transaction routing by means of CRTE is taking place but no conversation is in 
progress at the point of the failure. Where a conversation is in progress, a 
DEALLOCATE(ABEND) is sent to the partner of the failing CICS.

After the failure of CICS in an LU6.2 interconnected environment, and a 
subsequent emergency restart within the persistent session delay interval, 
transaction CLS1 (CNOS) is not run unless one side of the connection issued a 
CNOS request to zero or the connection was in the process of CNOS negotiation at 
the time of the failure. 

The failing system runs transaction CLS2 (XLN, exchange log names) as soon as it 
can after emergency restart within the persistent session delay interval. CLS2 must 
run before any further synclevel 2 conversations can be processed by either of the 
connected systems. 

 

Chapter 28. Intercommunication and VTAM persistent sessions 321



322 CICS TS for z/OS 4.1: Intercommunication Guide



Part 7. Data conversion in an intersystem environment 

CICS Transaction Server for z/OS application programs typically use an EBCDIC 
format to represent character data. When CICS exchanges data with remote 
systems, these systems often use ASCII or Unicode to represent character data. 

Data exchanged by systems, which use different formats to represent character 
data, must typically be converted between the different formats. 

Note: If you are using a channel to perform data conversion, read Data conversion 
with channels instead of this topic.

 

© Copyright IBM Corp. 1977, 2011 323



324 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 29. Where is data converted? 

When CICS intercommunication uses SNA links, system data is transmitted in 
EBCDIC format. Therefore, ASCII-based systems convert all data except for 
application data areas, which are converted by the system that receives the data. 

Function shipping and DPL 
For function shipping and DPL, data can be converted in the ASCII-based system 
or in CICS Transaction Server for z/OS. 

For function shipping and DPL from an ASCII-based system to CICS Transaction 
Server for z/OS, the ASCII-based system converts the resource names, and CICS 
Transaction Server for z/OS converts the user data. 

 Table 27. Data conversion for function shipping and DPL 

Request type Data Conversion type Where converted 

TS Queue name Character ASCII system 

TS 
FROM area As specified in 

DFHCNV table 
Receiving system 

TD Queue name Character ASCII system 

TD 
INTO area As specified in 

DFHCNV table 
Receiving system 

FC File name Character ASCII system 

FC 
SET area As specified in 

DFHCNV table 
Receiving system 

FC 
Key As specified in 

DFHCNV table 
Receiving system 

IC Transaction ID Character ASCII system 

IC 
FROM area As specified in 

DFHCNV table 
Receiving system 

IC 
RTERMID, 
RTRANSID, REQID 

Character ASCII system 

PC Program name Character ASCII system 

PC 
COMMAREA As specified in 

DFHCNV table 
Receiving system

  

For function shipping and DPL to an ASCII-based system from CICS Transaction 
Server for z/OS, the ASCII-based system converts all the data. 

Conversion of application data is done field-by-field. Thus, ensure that the size of 
each field in the application data is sufficient to hold the result of the conversion 
applied to it. (This is particularly relevant where a field in the application data 
contains both SBCS and DBCS characters). 

 

© Copyright IBM Corp. 1977, 2011 325



Distributed transaction processing 
In distributed transaction processing, all data areas are managed by the 
application, and therefore data conversion is the application's responsibility. 

When you design your applications, you can choose to convert data in CICS 
Transaction Server for z/OS, in the ASCII-based system, or in both. 

Transaction routing 
CICS Transaction Server for z/OS does not convert data for transaction routing. 
Screen data always flows as 3270 data streams. COMMAREAs and TCTUAs 
(which are relevant to pseudoconversational transactions) are converted by the 
ASCII system. 

 

326 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 30. Avoiding data conversion 

In many cases, you can design your applications to reduce the amount of data that 
is converted. 

For example, if an EBCDIC-based system acts as a file manager for an ASCII-based 
system, you can avoid converting any data by using ASCII to encode the data in 
the file. 

Conversely, if data is held in the ASCII-based system purely for the purpose of 
communicating with an EBCDIC-based system, you can avoid converting the data 
by coded it in EBCDIC. 

 

© Copyright IBM Corp. 1977, 2011 327



328 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 31. Types of conversion 

The possible types of conversion are standard conversion, no conversion, and 
user-defined nonstandard conversion. 

Standard conversion 
This applies to: 
v   Single-byte character sets (SBCS) 
v   Graphic or double-byte character sets (DBCS) 
v   Mixed character sets (containing SBCS and DBCS data) 
v   Multi-byte character sets (MBCS) 
v   By default, to binary data in INTEL format.

No conversion 
This applies to: 
v   Character data encoded as UCS-2 or UTF-8 
v   By default, to binary data in z/Architecture® format 
v   Packed decimal data.

User-defined nonstandard conversion 
You can apply nonstandard data conversion by writing your own version of 
the user-replaceable conversion program. 

 You can apply user-defined conversion to selected fields, and leave others to be 
converted by the CICS standard conversion program. 

For CICS Transaction Server for z/OS, you can provide either: 
1.   Your own, customized, version of DFHUCNV, or 

2.   One or more differently-named conversion programs

If the nonstandard conversion applies only to character data, you may not 
need to write your own data conversion program. Instead, you can create your 
own conversion tables for use with the standard conversion program, 
DFHCCNV. See Chapter 38, “User-defined conversion tables,” on page 367.

Attention:  Your user-supplied conversion program must not convert any data 
that the standard conversion program attempts to convert. Converting data 
twice gives unpredictable results. To avoid this, your conversion program must 
convert only fields defined as DATATYP=USERDATA (see the DATATYP 
option of the DFHCNV TYPE=FIELD macro).

 

© Copyright IBM Corp. 1977, 2011 329



330 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 32. Character data 

Character data is described by a character set identifier and a code page identifier. The 
code page identifier defines how each character is to be encoded; for example “A” 
is encoded as X'41' in ASCII and as X'C1' in EBCDIC. 

The SRVERCP keyword on the DFHCNV TYPE=ENTRY macro specifies the 
EBCDIC code page in which character data associated with a resource is encoded 
in CICS Transaction Server for z/OS. 

The CLINTCP keyword on the DFHCNV TYPE=ENTRY macro specifies the default 
code page in which the character data associated the specified resource is encoded 
when it is received by or sent from the CICS Transaction Server for z/OS. 
Typically, the data is encoded in ASCII, although in some cases it might be 
encoded in EBCDIC. When the data is encoded in EBCDIC, the code page is likely 
to be different from that specified by the SRVERCP keyword. 

The code page specified by the CLINTCP keyword can be overridden. This allows 
CICS Transaction Server for z/OS to communicate with several systems, each of 
which uses a code page to represent character data. 

 

© Copyright IBM Corp. 1977, 2011 331



332 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 33. Binary data 

The DATATYP keyword on the DFHCNV TYPE=ENTRY macro specifies the 
default format for binary data received by CICS Transaction Server for z/OS. 

DATATYP=BINARY 
Specifies that the default format for binary data is big-endian; that is, 
multibyte numerical values have the most significant byte values first (in 
the lower machine address). 

DATATYP=NUMERIC 
Specifies that the default format for binary data is little-endian; that is, 
multibyte numerical values have the least significant byte values first.

The default binary format can be overridden. It is therefore important that you 
code a DFHCNV TYPE=FIELD macro for every binary field. 

 

© Copyright IBM Corp. 1977, 2011 333



334 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 34. CICS-supported conversions 

This reference provides a complete list of the Coded Character Set Identifiers 
(CCSIDs) for code page conversion using the DFHCCNV conversion program. 

For unsupported CCSIDs, you can create your own conversion tables, for use with 
the standard conversion program, DFHCCNV. See Chapter 38, “User-defined 
conversion tables,” on page 367. 

For nonstandard conversions, you must supply your own conversion program; see 
“User/CICS conversion” on page 350. 

Groups for conversion between ASCII and EBCDIC 

CICS Transaction Server for z/OS can usually able to convert character data 
between ASCII and EBCDIC if the both CCSIDs belong to the same group. 
However, there are some limitations on conversions, even within the same group: 
for example, when new CCSIDs are defined to extend the character set, 
conversions between new equivalent ASCII and EBCDIC CCSIDs will be 
supported, but conversions mixing old and new ASCII and EBCDIC CCSIDs might 
not. 

The groups are: 

Arabic 
  

Baltic Rim 
Latvia, Lithuania, Estonia 

Cyrillic 
Eastern Europe; Bulgaria, Russia, Yugoslavia 

Devanagari (Hindi) 
India 

Farsi (Persian) 
Iran 

Greek 
Greece 

Hebrew 
Israel 

Japanese 
Japan 

Korean 
Korea 

Lao 
Laos 

Latin-1 and Latin-9 
USA, Western Europe, and many other countries 

 

© Copyright IBM Corp. 1977, 2011 335



Latin-2 
Eastern Europe; Albania, Czech Republic, Hungary, Poland, Romania, Slovakia, 
Yugoslavia, Former Yugoslavia 

Latin-5 
Turkey 

Simplified Chinese 
Peoples' Republic of China 

Thai 
Thailand 

Traditional Chinese 
Taiwan 

Urdu 
Pakistan 

Vietnamese 
Vietnam

The tables in the following sections list the CCSIDs supported for each group. For 
each CCSID, they show: 
v   The value to be specified for the CLINTCP or SRVERCP keyword. 
v   The code page identifier or identifiers (CPGIDs). 
v   An IANA-registered character set name for the code page, where a suitable 

name exists and CICS supports the use of this name on EXEC CICS commands. 
The CICS-supported name might be the primary name or a preferred alias. In 
some cases, more than one name or alias is supported.

Arabic 
Arabic conversions. 

 Table 28. Arabic, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

864 00864 00864 ibm864 PC data: Arabic 

 1089 
8859-6 

01089 01089 iso-8859-6 
iso_8859-6 

ISO 8859-6: Arabic 

1256 01256 01256 windows-1256 MS Windows: Arabic 

5352 05352 01256 MS Windows: Arabic, version 2 with 
euro 

9448 09448 09448 MS Windows: Arabic, 2001 

17248 17248 00864 PC Data: Arabic with euro
  

 Table 29. Arabic, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

420 00420 00420 ibm420 Host: Arabic 

16804 16804 00420 Host: Arabic with euro
  

Note: Data conversion does not change the direction of Arabic data.

 

336 CICS TS for z/OS 4.1: Intercommunication Guide



Baltic Rim 
Baltic Rim conversions. 

 Table 30. Baltic Rim, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

901 00901 00901 PC data: Latvia, Lithuania; with euro 

902 00902 00902 PC data: Estonia with euro 

921 00921 00921 PC data: Latvia, Lithuania 

922 00922 00922 PC data: Estonia 

1257 01257 01257 windows-1257 MS Windows: Baltic Rim 

5353 05353 01257 MS Windows: Baltic Rim, version 2 with 
euro

  

 Table 31. Baltic Rim, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1112 01112 01112 Host: Latvia, Lithuania 

1122 01122 01122 Host: Estonia 

1156 01156 01156 Host: Latvia, Lithuania; with euro 

1157 01157 01157 Host: Estonia, with euro
  

Cyrillic 
Cyrillic conversions. 

 Table 32. Cyrillic, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

808 00808 00808 PC data: Cyrillic, Russia; with euro 

848 00848 00848 PC data: Cyrillic, Ukraine; with euro 

849 00849 00849 PC data: Cyrillic, Belarus; with euro 

855 00855 00855 ibm855 PC data: Cyrillic 

866 00866 00866 ibm866 PC data: Cyrillic, Russia 

872 00872 00872 PC data: Cyrillic with euro 

 915 
8859-5 

00915 00915 iso-8859-5 
iso_8859-5 

ISO 8859-5: Cyrillic 

1124 01124 01124 8-bit: Cyrillic, Belarus 

1125 01125 01125 PC Data: Cyrillic, Ukraine 

1131 01131 01131 PC Data: Cyrillic, Belarus 

1251 01251 01251 windows-1251 MS Windows: Cyrillic 

5347 05347 01251 MS Windows: Cyrillic, version 2 with 
euro

  

 Table 33. Cyrillic, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1025 01025 01025 Host: Cyrillic multilingual 

 

Chapter 34. CICS-supported conversions 337



Table 33. Cyrillic, Server CCSIDs (continued) 

SRVERCP CCSID CPGID IANA charset name Comments 

1123 01123 01123 Host: Cyrillic Ukraine 

1154 01154 01154 Host: Cyrillic multilingual; with euro 

1158 01158 01158 Host: Cyrillic Ukraine; wtih euro
  

Devanagari 
Devanagari conversions. 

 Table 34. Devanagari, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

806 00806 00806 PC data: ISCII-91, Devanagari script code
  

 Table 35. Devanagari, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1137 01137 01137 Host: Devanagari
  

Note: These Devanagari CCSIDs may also be used to encode the identical 
Devanagari character repertoire used by Marathi. 

Farsi 
Farsi conversions. 

 Table 36. Farsi, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

1098 01098 01098 PC data: Farsi
  

 Table 37. Farsi, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1097 01097 01097 Host: Farsi
  

Note: Data conversion does not change the direction of Farsi data. 

Greek 
Greek conversions. 

 Table 38. Greek, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

 813 
8859-7 

00813 00813 iso-8859-7 
iso_8859-7 

ISO 8859-7: Greece 

869 00869 00869 ibm869 PC data: Greece 

1253 01253 01253 windows-1253 MS Windows: Greece 

4909 04909 00813 ISO 8859-7: Greece with euro 

 

338 CICS TS for z/OS 4.1: Intercommunication Guide



Table 38. Greek, Client CCSIDs (continued) 

CLINTCP CCSID CPGID IANA charset name Comments 

5349 05349 01253 MS Windows: Greece, version 2 with 
euro 

9061 09061 00869 PC Data: Greece with euro
  

 Table 39. Greek, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

875 00875 00875 Host: Greece 

4971 04971 00875 Host: Greece with euro
  

Hebrew 
Hebrew conversions. 

 Table 40. Hebrew, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

856 00856 00856 PC data: Hebrew 

862 00862 00862 ibm862 PC data: Hebrew (migration) 

867 00867 00867 PC Data: Hebrew with euro 

 916 
8859-8 

00916 00916 iso-8859-8 
iso_8859-8 

ISO 8859-8: Hebrew 

1255 01255 01255 windows-1255 MS Windows: Hebrew 

5351 05351 01255 MS Windows: Hebrew, version 2 with 
euro 

9447 09447 01255 MS Windows: Hebrew, version 2 with 
euro and new sheqel

  

 Table 41. Hebrew, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

424 00424 00424 ibm424 Host: Hebrew 

803 00803 00803 Host: Hebrew (Character Set A) 

4899 04899 00803 Host: Hebrew (Character Set A) with 
euro 

12712 12712 00424 Host: Hebrew with euro and new sheqel
  

Note: Data conversion does not change the direction of Hebrew data.

 

Chapter 34. CICS-supported conversions 339



Japanese 
Japanese conversions. 

 Table 42. Japanese, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

932 00932 1.   00897 
2.   00301 

1.   PC data: SBCS 
2.   PC data: DBCS including 1880 

user-defined characters 

942 00942 1.   01041 
2.   00301 

1.   PC data: Extended SBCS 
2.   PC data: DBCS including 1880 

user-defined characters 

943 00943 1.   00897 
2.   00941 

shift-jis 
x-sjis 

1.   PC data: SBCS 
2.   PC data: DBCS for Open environment 

including 1880 IBM user-defined 
characters 

 954 
EUCJP 

00954 1.   00895 
2.   00952 
3.   00896 
4.   00953 

euc-jp 1.   G0: JIS X201 Roman 
2.   G1: JIS X208-1990 
3.   G1: JIS X201 Katakana 
4.   G1: JIS X212 

5050 05050 1.   00895 
2.   00952 
3.   00896 
4.   00953 

1.   G0: JIS X201 Roman 
2.   G1: JIS X208-1990 
3.   G1: JIS X201 Katakana 
4.   G1: JIS X212

  

 Table 43. Japanese, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

930 00930 1.   00290 
2.   00300 
3.   00290 
4.   00300 

1.   Katakana Host: extended SBCS 
2.   Kanji Host: DBCS including 4370 

user-defined characters 
3.   Katakana Host: extended SBCS 
4.   Kanji Host: DBCS including 1880 

user-defined characters 

931 00931 1.   00037 
2.   00300 

1.   Latin Host: SBCS 
2.   Kanji Host: DBCS including 4370 

user-defined characters 

939 00939 1.   01027 
2.   00300 
3.   01027 
4.   00300 

1.   Latin Host: extended SBCS 
2.   Kanji Host: DBCS including 4370 

user-defined characters 
3.   Latin Host: extended SBCS 
4.   Kanji Host: DBCS including 1880 

user-defined characters 

1390 01390 1.   00290 
2.   00300 

1.   Katakana Host: extended SBCS; with 
euro 

2.   Kanji Host: DBCS including 6205 
user-defined characters 

1399 01399 1.   01027 
2.   00300 

1.   Latin Host: extended SBCS; with euro 
2.   Kanji Host: DBCS including 4370 

user-defined characters; with euro
 

 

340 CICS TS for z/OS 4.1: Intercommunication Guide



Korean 
Korean conversions. 

 Table 44. Korean, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

934 00934 1.   00891 
2.   00926 

1.   PC data: SBCS 
2.   PC data: DBCS including 1880 

user-defined characters 

944 00944 1.   01040 
2.   00926 

1.   PC data: Extended SBCS 
2.   PC data: DBCS including 1880 

user-defined characters 

949 00949 1.   01088 
2.   00951 

1.   IBM KS Code - PC data: SBCS 
2.   IBM KS code - PC data: DBCS 

including 1880 user-defined 
characters 

 970 
EUCKR 

00970 1.   00367 
2.   00971 

euc-kr 1.   G0: ASCII 
2.   G1: KSC X5601-1989 including 1880 

user-defined characters 

1363 01363 1.   01126 
2.   01362 

1.   PC data: MS Windows Korean SBCS 
2.   PC data: MS Windows Koran DBCS 

including 11172 full Hangul
  

 Table 45. Korean, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

933 00933 1.   00833 
2.   00834 

1.   Host: Extended SBCS 
2.   Host: DBCS including 1880 

user-defined characters and 11172 full 
Hangul characters 

1364 01364 1.   00833 
2.   00834 

1.   Host: Extended SBCS 
2.   Host: DBCS including 1880 

user-defined characters and 11172 full 
Hangul characters

  

Lao 
Lao conversions. 

 Table 46. Lao, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

1133 01133 01133 ISO-8: Lao
  

 Table 47. Lao, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1132 01132 01132 Host: Lao
 

 

Chapter 34. CICS-supported conversions 341



Latin-1 and Latin-9 
Latin-1 and Latin-9 conversions. 

 Table 48. Latin-1, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

437 00437 00437 ibm437 PC data: PC Base; USA, many other 
countries 

 819 
8859-1 

00819 00819 iso-8859-1 
iso_8859-1 

ISO 8859-1: Latin-1 countries 

850 00850 00850 ibm850 PC data: Latin-1 countries 

858 00858 00858 ibm00858 PC data: Latin-1 countries; with euro 

923 00923 00923 iso-8859-15 
iso_8859-15 

ISO 8859-15: Latin-9 

924 00924 00924 ibm00924 ISO 8859-15: Latin-9 

1047 01047 01047 Host: Latin-1 

1252 01252 01252 windows-1252 MS Windows: Latin-1 countries 

5348 05348 01252 MS Windows: Latin-1 countries, version 
2 with euro

  

 Table 49. Latin-1 and Latin-9, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

037 00037 00037 ibm037 Host: USA, Canada (ESA), Netherlands, 
Portugal, Brazil, Australia, New Zealand 

273 00273 00273 ibm273 Host: Austria, Germany 

277 00277 00277 ibm277 Host: Denmark, Norway 

278 00278 00278 ibm278 Host: Finland, Sweden 

280 00280 00280 ibm280 Host: Italy 

284 00284 00284 ibm284 Host: Spain, Latin America (Spanish) 

285 00285 00285 ibm285 Host: United Kingdom 

297 00297 00297 ibm297 Host: France 

500 00500 00500 ibm500 Host: Belgium, Canada (AS/400®), 
Switzerland, International Latin-1 

871 00871 00871 ibm871 Host: Iceland 

924 00924 00924 ibm00924 Host: Latin-9 

1047 01047 01047 Host: Latin-1 

1140 01140 01140 ibm01140 Host: USA, Canada (ESA), Netherlands, 
Portugal, Brazil, Australia, New Zealand; 
with euro 

1141 01141 01141 ibm01141 Host: Austria, Germany; with euro 

1142 01142 01142 ibm01142 Host: Denmark, Norway; with euro 

1143 01143 01143 ibm01143 Host: Finland, Sweden; with euro 

1144 01144 01144 ibm01144 Host: Italy; with euro 

1145 01145 01145 ibm01145 Host: Spain, Latin America (Spanish); 
with euro 

 

342 CICS TS for z/OS 4.1: Intercommunication Guide



Table 49. Latin-1 and Latin-9, Server CCSIDs (continued) 

SRVERCP CCSID CPGID IANA charset name Comments 

1146 01146 01146 ibm01146 Host: United Kingdom; with euro 

1147 01147 01147 ibm01147 Host: France; with euro 

1148 01148 01148 ibm01148 Host: Belgium, Canada (AS/400), 
Switzerland, International Latin-1; with 
euro 

1149 01149 01149 ibm01149 Host: Iceland; with euro
  

Note: Conversions are supported between non euro-supported CCSIDs and 
euro-supported CCSIDs. These should be used with care because: 
v   The international currency symbol in each non euro-supported EBCDIC CCSID 

(for example, 00500) has been replaced by the euro symbol in the equivalent 
euro-supported EBCDIC CCSID (for example, 01148). 

v   The dotless i in non euro-supported ASCII CCSID 00850 has been replaced by 
the euro symbol in the equivalent euro-supported ASCII CCSID 00858.

Latin-2 
Latin-2 conversions. 

 Table 50. Latin-2, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

852 00852 00852 ibm852 PC data: Latin-2 multilingual 

 912 
8859-2 

00912 00912 iso-8859-2 
iso_8859-2 

ISO 8859-2: Latin-2 multilingual 

1250 01250 01250 windows-1250 MS Windows: Latin-2 

5346 05346 01250 MS Windows: Latin-2, version 2 with 
euro 

9044 09044 00852 PC data: Latin-2 multilingual with euro
  

 Table 51. Latin-2, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

500 00500 00500 ibm500 Host: International Latin-1 

870 00870 00870 ibm870 Host: Latin-2 multilingual 

924 00924 00924 ibm00924 Host: Latin-9 

1140 01140 01140 ibm01140 Host: USA, Canada (ESA), Netherlands, 
Portugal, Brazil, Australia, New Zealand; 
with euro 

1141 01141 01141 ibm01141 Host: Austria, Germany; with euro 

1142 01142 01142 ibm01142 Host: Denmark, Norway; with euro 

1143 01143 01143 ibm01143 Host: Finland, Sweden; with euro 

1144 01144 01144 ibm01144 Host: Italy; with euro 

1145 01145 01145 ibm01145 Host: Spain, Latin America (Spanish); 
with euro 

1146 01146 01146 ibm01146 Host: United Kingdom; with euro 

 

Chapter 34. CICS-supported conversions 343



Table 51. Latin-2, Server CCSIDs (continued) 

SRVERCP CCSID CPGID IANA charset name Comments 

1147 01147 01147 ibm01147 Host: France; with euro 

1148 01148 01148 ibm01148 Host: International Latin-1 with euro 

1149 01149 01149 ibm01149 Host: Iceland; with euro 

1153 01153 01153 Host: Latin-2 multilingual with euro
  

Note: Conversions are supported for some combinations of Latin-2 ASCII CCSIDs 
and Latin-1 EBCDIC CCSIDs. 

Latin-5 
Latin-5 conversions. 

 Table 52. Latin-5, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

857 00857 00857 ibm857 PC data: Latin-5 (Turkey) 

 920 
8859-9 

00920 00920 iso-8859-9 
iso_8859-9 

ISO 8859-9: Latin-5 (ECMA-128, Turkey 
TS-5881) 

1254 01254 01254 windows-1254 MS Windows: Turkey 

5350 05350 01254 MS Windows: Turkey, version 2 with 
euro 

9049 09049 00857 PC data: Latin-5 (Turkey) with euro
  

 Table 53. Latin-5, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1026 01026 01026 ibm1026 Host: Latin-5 (Turkey) 

1155 01155 01155 Host: Latin-5 (Turkey) with euro
  

Simplified Chinese 
Simplified Chinese conversions. 

 Table 54. Simplified Chinese, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

946 00946 1.   01042 
2.   00928 

1.   PC data: Extended SBCS 
2.   PC data: DBCS including 1880 

user-defined characters 

1381 01381 1.   01115 
2.   01380 

gb2312 1.   PC data: Extended SBCS (IBM GB) 
2.   PC data: DBCS (IBM GB) including 

31 IBM-selected, 1880 user-defined 
characters 

 1383 
EUCCN 

01383 1.   00367 
2.   01382 

1.   G0: ASCII 
2.   G1: GB 2312-80 set 

 

344 CICS TS for z/OS 4.1: Intercommunication Guide



Table 54. Simplified Chinese, Client CCSIDs (continued) 

CLINTCP CCSID CPGID IANA charset name Comments 

1386 01386 1.   01114 
2.   01385 

1.   PC data: S-Chinese GBK and 
T-Chinese IBM BIG-5 

2.   PC data: S-Chinese GBK 

5488 05488 1.   01252 
2.   01385 
3.   01391 

gb18030 1.   GB18030, 1-byte data 
2.   GB18030, 2-byte data 
3.   GB18030, 4-byte data

  

 Table 55. Simplified Chinese, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

935 00935 1.   00836 
2.   00837 

1.   Host: Extended SBCS 
2.   Host: DBCS including 1880 

user-defined characters 

1388 01388 1.   00836 
2.   00837 

1.   Host: Extended SBCS 
2.   Host: DBCS including 1880 

user-defined characters 

9127 09127 1.   00836 
2.   00837 

1.   Host: Extended SBCS 
2.   Host: DBCS including 1880 

user-defined characters
  

Thai 
Thai conversions. 

 Table 56. Thai, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

1161 01161 01161 PC data: Thai with euro 

1162 01162 01162 MS Windows: Thai with euro 

9066 09066 00874 PC data: Thai extended SBCS
  

 Table 57. Thai, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1160 01160 01160 Host: Thai with euro 

9030 09030 00838 Host: Thai extended SBCS
  

Traditional Chinese 
Traditional Chinese conversions. 

 Table 58. Traditional Chinese, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

938 00938 1.   00904 
2.   00927 

1.   PC data: SBCS 
2.   PC data: DBCS including 6204 

user-defined characters 

948 00948 1.   01043 
2.   00927 

1.   PC data: Extended SBCS 
2.   PC data: DBCS including 6204 

user-defined characters 

 

Chapter 34. CICS-supported conversions 345



Table 58. Traditional Chinese, Client CCSIDs (continued) 

CLINTCP CCSID CPGID IANA charset name Comments 

 950 
BIG5 

00950 1.   01114 
2.   00947 

big5 1.   PC data: SBCS (IBM BIG5) 
2.   PC data: DBCS including 13493 CNS, 

566 IBM selected, 6204 user-defined 
characters 

 964 
EUCTW 

00964 1.   00367 
2.   00960 
3.   00961 

1.   G0: ASCII 
2.   G1: CNS 11643 plane 1 
3.   G1: CNS 11643 plane 2 

1370 01370 1.   01114 
2.   00947 

1.   PC data: Extended SBCS; with euro 
2.   PC data: DBCS including 6204 

user-defined characters; with euro
  

 Table 59. Traditional Chinese, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

937 00937 1.   00037 
2.   00835 

1.   Host: Extended SBCS 
2.   Host: DBCS including 6204 

user-defined characters 

1371 01371 1.   01159 
2.   00835 

1.   Host: Extended SBCS; with euro 
2.   Host: DBCS including 6204 

user-defined characters; with euro
  

Urdu 
Urdu conversions. 

 Table 60. Urdu, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

868 00868 00868 ibm868 PC data: Urdu 

1006 01006 01006 ISO-8: Urdu
  

 Table 61. Urdu, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

918 00918 00918 ibm918 Host: Urdu
  

Note: Data conversion does not change the direction of Urdu data. 

Vietnamese 
Vietnamese conversions. 

 Table 62. Vietnamese, Client CCSIDs 

CLINTCP CCSID CPGID IANA charset name Comments 

1129 01129 01129 ISO-8: Vietnamese 

1163 01163 01163 ISO-8: Vietnamese with euro 

1258 01258 01258 windows-1258 MS Windows: Vietnamese 

5354 05354 01258 MS Windows: Vietnamese, version 2 with 
euro

 

 

346 CICS TS for z/OS 4.1: Intercommunication Guide



Table 63. Vietnamese, Server CCSIDs 

SRVERCP CCSID CPGID IANA charset name Comments 

1130 01130 01130 Host: Vietnamese 

1164 01164 01164 Host: Vietnamese with euro
  

Unicode data 
CICS Transaction Server for z/OS provides limited support for Unicode-encoded 
character data. The support allows workstations to share UCS-2 or UTF-8 encoded 
data with CICS Transaction Server for z/OS provided that no conversion is 
required. 

Note: More extensive support for conversion to and from Unicode data is available 
in CICS if you use channels to communicate your data. See the CICS Application 
Programming Guide. 

 Table 64. Unicode 

CLINTCP 
SRVERCP 

CCSID CPGID IANA charset name Comments 

1200 
UCS-2 

01200 01400 utf-16 Unicode with character set 65535. In the 
absence of a byte-order mark (BOM), 
assumed to be UTF-16 BE (big-endian). 

1208 
UTF-8 

01208 01400 utf-8 Unicode with character set 65535. UTF-8. 

13488 13488 01400 iso-10646-ucs-2 Unicode with character set 3001 (fixed at 
Unicode 2.0 character repertoire). In the 
absence of a byte-order mark, assumed 
to be UTF16-BE (big-endian). 

17584 17584 01400 Unicode with character set 3004 (fixed at 
Unicode 3.0 character repertoire). in the 
absence of a byte-order mark, assumed 
to be UTF16-BE (big-endian).

 

Chapter 34. CICS-supported conversions 347



348 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 35. The conversion process 

This section describes in more detail how data conversion works in CICS. 

Components 
The CICS or user-supplied mirror transactions convert the data, using DFHCNV, 
DFHCCNV, and the user-replaceable conversion program, DFHUCNV. 

DFHCNV 
The conversion table. For each resource for which conversion is required, 
DFHCNV contains a conversion template. A conversion template is a table entry 
defining fields in a data area that are to be converted, and the conversion 
method to be applied to each field. 

 You define the DFHCNV table with the DFHCNV resource definition macros 
described in Chapter 37, “Defining the conversion table,” on page 355. 

DFHCCNV 
The CICS program that drives the conversion process. DFHCCNV uses the 
DFHCNV table to determine the required conversions. It applies standard 
conversion to those fields in the conversion templates for which nonstandard, 
user-handled conversion is not specified. 

The user-replaceable conversion program, DFHUCNV 
A user-replaceable program that allows you to override the standard 
conversions applied by CICS. You can use it to apply your own conversion 
logic to specific data fields. (How to do this is described in “User/CICS 
conversion” on page 350.) 

 You can use the supplied program as a model on which to base your own 
version. 

You can provide either: 
v   Your own, customized, version of DFHUCNV, or 

v   One or more differently-named conversion programs

Process 
This section describes the standard conversions that can be applied by DFHCCNV 
to specific fields in a conversion template. Other types of conversion are possible, 
if you write a DFHUCNV program. 

Character data 
Character data can be converted: 
v   From ASCII to EBCDIC, on receipt of a request from a connected system, 

before invoking the EXEC interface 
v   From EBCDIC to ASCII, on return from the EXEC interface, before the 

response is transmitted.

The translation tables shipped with CICS conform to the standards described 
in the IBM Character Data Representation Architecture Level 2 - Registry, 
SC09-1391. 

Binary data 
Binary data can be converted: 

 

© Copyright IBM Corp. 1977, 2011 349



v   From little-endian to big-endian format, on receipt of a request from a 
connected system. 

v   From big-endian to little-endian format, before the response is transmitted.

Standard and nonstandard conversion 
There are three ways a single resource, for example a file, can be converted. 
v   CICS-only conversion—all data fields are handled by the standard CICS 

conversion program, DFHCCNV 
v   User/CICS conversion—a combination of nonstandard and standard conversion, 

in which some data fields are handled by code in the user's conversion program 
and some by DFHCCNV 

v   User-only conversion—all data fields are handled by the user's conversion 
program.

CICS-only conversion 
Use CICS-only conversion when the resource contains no data fields that require 
nonstandard conversion; all can be converted by standard means. 

Procedure 
1.   Create a conversion template, using the DFHCNV macros described in 

Chapter 37, “Defining the conversion table,” on page 355. This enables 
DFHCCNV to handle the resource. 

2.   Specify USREXIT=NO on the DFHCNV TYPE=ENTRY macro that defines the 
resource. This prevents DFHUCNV from being called unnecessarily. Do not 
specify DATATYP=USERDATA on any of the DFHCNV TYPE=FIELD macros 
that define the data fields.

User/CICS conversion 
Use user/CICS conversion when the resource contains some fields that can be 
converted by standard means, and some that require nonstandard conversion. 

Procedure 
1.   Create a conversion template. 
2.   Specify the USREXIT keyword on the DFHCNV TYPE=ENTRY macro that 

defines the resource. 
v   If you specify USREXIT=YES, CICS calls DFHUCNV to convert the data. 
v   If you specify USREXIT=program, CICS calls the named program to convert 

the data.
3.   Specify DATATYP=USERDATA on the DFHCNV TYPE=FIELD macros that 

define the nonstandard data fields. 
a.   Optional: Define nonstandard fields with a USRTYPE value in the range 

X'50' through X'80' These values are passed to your user program, and can 
be used to distinguish between different types of nonstandard field.

4.   Define standard fields as DATATYP=CHARACTER, PD, BINARY, GRAPHIC, or 
NUMERIC, as appropriate. 

5.   Supply a user-written version of DFHUCNV or a differently-named conversion 
program to handle the nonstandard fields. Chapter 41, “The user-replaceable 
conversion program,” on page 375 gives a description and listing of 
DFHUCNV, with guidance on how to use it as a basis for your own conversion 
program.

 

350 CICS TS for z/OS 4.1: Intercommunication Guide



User-only conversion 
The resource contains no fields that can be converted by standard means; all 
require nonstandard conversion. There are two methods of enabling user-only 
conversion. 

Procedure 
1.   Create a conversion template. 
2.   Specify the USREXIT keyword on the DFHCNV TYPE=ENTRY macro that 

defines the resource. 
v   If you specify USREXIT=YES, CICS calls DFHUCNV to convert the data. 
v   If you specify USREXIT=program, CICS calls the named program to convert 

the data.
3.   Specify DATATYP=USERDATA on the DFHCNV TYPE=FIELD macros that 

define the nonstandard data fields. 
a.   Optional: Define nonstandard fields with a USRTYPE value in the range 

X'50' through X'80' These values are passed to your user program, and can 
be used to distinguish between different types of nonstandard field.

4.   Supply a user-written version of DFHUCNV or a differently-named conversion 
program to handle all fields. Chapter 41, “The user-replaceable conversion 
program,” on page 375 gives a description and listing of DFHUCNV, with 
guidance on how to use it as a basis for your own conversion program. 

5.   

Sequence of conversion processing 
This is the sequence of conversion processing. 
1.   Unless USREXIT=NO is specified in the DFHCNV TYPE=ENTRY macro that 

defines the conversion template for the resource, DFHCCNV links to 
DFHUCNV, passing the parameter list described in “Parameter list 
(DFHUVNDS)” on page 375. 

Note:  

a.   If you have not defined a template, DFHUCNV is invoked, on the 
assumption that the user program is to handle all conversions for the 
resource. 

b.   DFHUCNV must be present in your system unless all DFHCNV 
TYPE=ENTRY macros specify USREXIT=NO.

2.   If a conversion template is defined for the resource, DFHUCNV is responsible 
for converting any fields with a type in the user-data range. 
If no conversion template is defined for the resource, DFHUCNV is responsible 
for determining the format of the data, and for converting all appropriate 
fields. 

3.   On return from DFHUCNV, DFHCCNV carries out any standard conversions 
specified in the conversion template for fields that are not subject to 
user-defined conversion. 

4.   The shipped request is executed.

Figure 98 on page 353 illustrates the conversion process. 
 

 

Chapter 35. The conversion process 351



352 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 36. Resource definition to enable data conversion 

DFHUCNV

DFHUCNV

Request
in

CICS conversion applied

no

User conversion
applied

CICS - only
conversion specified ?

Resonse

shipped request executed

EXEC call

DFHCCNV

DFHCCNV

Response
out

CICS mirror transaction

Template supplied ?

Template supplied ?

CICS conversion applied

yes

yes

no

no

no

yes

yes

User conversion
applied

CICS - only
conversion specified ?

  

Figure 98. The data conversion process

 

© Copyright IBM Corp. 1977, 2011 353



In order to convert data in CICS Transaction Server for z/OS, you must define 
some resources in your CICS region. 

The resources you must define are: 
v   DFHCNV, conversion table 
v   DFHCCNV, standard conversion program 
v   DFHUCNV, user-defined conversion program.

 

354 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 37. Defining the conversion table 

You define the conversion table with DFHCNV resource definition macros. 

The output of the DFHCNV macro assembly contains templates specifying 
resource conversion requirements and conversion tables to enable the required 
conversions. User-generated conversion tables must be placed in the DFHCNV 
macro source. 

DFHCNV macro types 
Use the DFHCNV macro to define the conversion table. 

DFHCNV TYPE=INITIAL 
Defines the beginning of the conversion table. It defines the default client and 
server CCSIDs. 

DFHCNV TYPE=ENTRY 
Specifies a name and type to uniquely identify a data resource. Specify a 
DFHCNV TYPE=ENTRY macro for each resource for which conversion is 
required; data is not converted for resources that are not defined in a 
DFHCNV TYPE=ENTRY macro. The entry for one resource is concluded by the 
next TYPE=ENTRY statement, or by the end of the table. The CCSID to be 
used is specified. 

 You can create generic templates that apply to multiple resources of the same 
resource type. You do this by using the RPFX or XRPFX parameters of the 
DFHCNV TYPE=ENTRY macro to specify a prefix that can be matched against 
multiple resource names, rather than using the full name of a specific resource. 

Defining resources in this way means that sequence is important in the 
conversion table. For example, when specifying file resources, if prefix AB 
precedes prefix ABCD, the former entry is used to convert data for a file 
resource named ABCDEFGH. This example would give you an error when 
assembling the conversion table. To avoid errors, you should put the most 
specific resource names at the top of the conversion table, with the least 
specific prefix at the bottom. 

When no resource name or prefix is specified, the default conversion template 
is used for that particular resource type. 

For an example of the DFHCNV TYPE=ENTRY macro, see “DFHCNV 
TYPE=ENTRY” on page 360. 

DFHCNV TYPE=KEY 
Applies only to an FC entry. Use this macro only if a record might need to be 
accessed by key (if records are always accessed by relative record number or 
relative byte address, do not code a TYPE=KEY macro). If you use this macro, 
it must immediately follow a TYPE=ENTRY macro, and must be followed by 
one or more TYPE=FIELD macros, which define the data conversion to be 
applied to the key. 

DFHCNV TYPE=SELECT 
Defines selection of a record (FC record, TS data, TD data, IC start “from” 
data, or COMMAREA transmitted with DPL) for data conversion based on the 
value of a field in the record. Each TYPE=SELECT macro is followed by one or 
more TYPE=FIELD macros, which define the data conversion to be applied if 

 

© Copyright IBM Corp. 1977, 2011 355



the record satisfies the test defined in the TYPE=SELECT macro. The last 
TYPE=SELECT macro for each entry is an OPTION=DEFAULT macro, which 
defines the conversion to be applied to a record that satisfies no preceding 
TYPE=SELECT macro. 

DFHCNV TYPE=FIELD 
Specifies the position and length of a field, and the conversion to be applied to 
it. You must specify a TYPE=FIELD macro for each field for which conversion 
is required. 

DFHCNV TYPE=FINAL 
Concludes the conversion table definition.

Conversion and key templates 
Templates are table entries defining fields in a data area or key that are to be 
converted and the conversion method to be applied to each field. There are two 
types of template: conversion templates and key templates. 
v   A conversion template is defined by one or more DFHCNV TYPE=FIELD 

macros following a DFHCNV TYPE=SELECT macro. 
v   A key template is defined by of one or more DFHCNV TYPE=FIELD macros 

following a DFHCNV TYPE=KEY macro. 

Both types of template are terminated by the next non-FIELD macro in the table 
definition. Figure 100 on page 358 shows templates within a complete conversion 
table definition. 

Defaults for client and server code pages 
In order to reduce the number of conversion tables required, you can specify that 
the default client or server code page is defined in the system initialization table. 

For the client code page: 
1.   In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value 

SYSDEF for the CLINTCP parameter. 
2.   In the system initialization table, set a default client code page by specifying a 

value for the CLINTCP parameter. You can use any value supported for the 
CLINTCP parameter on the DFHCNV macro. The default is CLINTCP=437.

For the server code page: 
1.   In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value 

SYSDEF for the SRVERCP parameter. 
2.   In the system initialization table, set a server code page by specifying a value 

for the SRVERCP parameter. You can use any value supported for SRVERCP 
parameter on the DFHCNV macro. The default is SRVERCP=037.

Conversion table for initial program verification (IVP) 
When running the IVP jobs for CICS Transaction Server for z/OS, you need a 
conversion table. 

Figure 99 on page 357 is a simple example of a conversion table definition. You 
don't need to code all these macros. You can generate exactly the same conversion 
table by assembling the special macro, DFHCNV TYPE=IVP. 

 

356 CICS TS for z/OS 4.1: Intercommunication Guide



All the fields are character, so only a single TYPE=SELECT macro is needed. It 
specifies OPTION=DEFAULT, and has a single TYPE=FIELD macro to define the 
whole data record. 

The TYPE=KEY macro is followed by a single TYPE=FIELD macro, which 
redefines the first six bytes of the data record. 
 

 Figure 100 on page 358 shows a typical sequence of DFHCNV macros. The figure 
is annotated to show the sets of entries that correspond to resource entries, 
conversion templates, and key templates. (The indentation is to illustrate nesting. 
When coding the macros, as with all CICS resource definition macros, observe 
assembler rules.) 
 

   DFHCNV TYPE=INITIAL 
   DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=FILEA,USREXIT=NO 
   DFHCNV TYPE=KEY 
   DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES 
   DFHCNV TYPE=SELECT,OPTION=DEFAULT 
   DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=80,LAST=YES 
   DFHCNV TYPE=FINAL 
 
Figure 99. Conversion table for IVP

 

Chapter 37. Defining the conversion table 357



DFHCNV TYPE=INITIAL 
This is the format of the DFHCNV TYPE=INITIAL macro. 

 

DFHCNV TYPE=INITIAL

DFHCNV TYPE=ENTRY,RTYPE=FC
DFHCNV TYPE=KEY

Key
DFHCNV TYPE=FIELD template

DFHCNV TYPE=SELECT,OPTION=COMPARE

DFHCNV TYPE=FIELD Conversion
DFHCNV TYPE=FIELD template Entry

for
DFHCNV TYPE=SELECT,OPTION=COMPARE FC

resource
DFHCNV TYPE=FIELD
DFHCNV TYPE=FIELD Conversion
DFHCNV TYPE=FIELD template
DFHCNV TYPE=FIELD

DFHCNV TYPE=SELECT,OPTION=DEFAULT
Conversion DFHCNV

DFHCNV TYPE=FIELD template conversion
table

DFHCNV TYPE=ENTRY,RTYPE=TS
DFHCNV TYPE=SELECT,OPTION=COMPARE

DFHCNV TYPE=FIELD Conversion Entry
DFHCNV TYPE=FIELD template for

TS
DFHCNV TYPE=SELECT,OPTION=DEFAULT resource

Conversion
DFHCNV TYPE=FIELD template

DFHCNV TYPE=ENTRY,RTYPE=TD
DFHCNV TYPE=SELECT,OPTION=DEFAULT Entry

for
DFHCNV TYPE=FIELD Conversion TD
DFHCNV TYPE=FIELD template resource

DFHCNV TYPE=FINAL

  

Figure 100. Example of DFHCNV macro sequence

 

358 CICS TS for z/OS 4.1: Intercommunication Guide



TYPE=INITIAL 
Defines the beginning of the conversion table. 

CLINTCP={437|SYSDEF|nnnn[,nnnn, ...]} 
The first operand defines the default client CCSID to be used when the 
CLINTCP and CDEPAGE operands are omitted from a DFHCNV 
TYPE=ENTRY macro. 

 SYSDEF specifies that the default client code page is determined by the system 
initialization table parameter CLINTCP. 

For an explanation of code pages, and a list of those that you can specify, see 
Chapter 32, “Character data,” on page 331. 

SRVERCP={037|SYSDEF|nnnn[,nnnn, ...]} 
The first operand defines the server CCSID to be used when the SRVERCP and 
CDEPAGE operands are omitted from a DFHCNV TYPE=ENTRY macro. 

 SYSDEF specifies that the default server code page is determined by the 
system initialization table parameter SRVERCP. 

For an explanation of code pages, and a list of those that you can specify, see 
Chapter 32, “Character data,” on page 331. 

CDEPAGE=nnnn[,nnnn...] 

Restriction: Do not use this parameter for new definitions. It is supported only 
for compatibility with earlier releases. 

Each possible value is equivalent to a pair of CLINTCP and SRVERCP entries 
or (for user-defined conversion) to a SRVERCP entry. 

437 
Is equivalent to: 
v   CLINTCP=437 
v   SRVERCP=037

932K 
Is equivalent to: 
v   CLINTCP=932 

�� DFHCNV TYPE=INITIAL 

�

 
437

 

,CLINTCP=

 

SYSDEF

 

nnnn

 

,nnnn

 �

� 

�

 
037

 

,SRVERCP=

 

SYSDEF

 

nnnn

 

,nnnn

 

�

 

,CDEPAGE=

 

nnnn

 

,nnnn

 ��

 

 

Chapter 37. Defining the conversion table 359



v   SRVERCP=930

932 
Is equivalent to: 
v   CLINTCP=932 
v   SRVERCP=931

USR 
Is equivalent to: 
v   SRVERCP=USR

USRD 
Is equivalent to: 
v   SRVERCP=USRD

DFHCNV TYPE=ENTRY 
This is the format of the DFHCNV TYPE=ENTRY macro instruction. 

 

 

360 CICS TS for z/OS 4.1: Intercommunication Guide



TYPE=ENTRY 
Specifies that this macro defines a resource by name and type. 

RTYPE={FC|TS|TD|IC|PC} 
Specifies the type of resource: 

FC  A file 

TS  A temporary storage queue 

TD  A transient data queue 

IC  An interval control start with data 

PC A program link with a COMMAREA.

CLINTCP={nnnn[,nnnn, ...]|SYSDEF} 
The first operand defines the default client code page to be used. 

 SYSDEF specifies that the default client code page is determined by the system 
initialization table parameter CLINTCP. 

�� DFHCNV TYPE=ENTRY ,RTYPE= FC 
IC

 

PC

 

TD

 

TS

 

�

 
CLINTCP=

 

SYSDEF

 

nnnn

 

,nnnn

 �

� 
SRVERCP

 

SYSDEF

 

nnnn

 �

�
 

Resource
 

(standard
 

syntax)
 

Resource

 

(extended

 

syntax

 

for

 

CICS

 

TS

 

for

 

z/OS

 

Version

 

2.3

 

and

 

later)

 ,USREXIT=YES 

,USREXIT=NO

 

,program

 
�

� 
,CDEPAGE=nnnn

 ��

 

Resource (standard syntax): 

 ,RNAME=resourcename 
,XRNAME=xxxxxxxxxxxxxxxx

 

 

Resource (extended syntax for CICS TS for z/OS Version 2.3 and later): 

 
,RNAME=resourcename

 

,RPFX=resourceprefix

 

,XRNAME=xxxxxxxxxxxxxxxx

 

,XRPFX=xxxxxxxxxxxxxx

 

 

 

Chapter 37. Defining the conversion table 361



For an explanation of code pages, and a list of those that you can specify, see 
Chapter 32, “Character data,” on page 331. 

SRVERCP={nnnn|SYSDEF} 
The operand defines the server code page to be used. 

 SYSDEF specifies that the server code page is determined by the system 
initialization table parameter SRVERCP. 

For an explanation of code pages, and a list of those that you can specify, see 
Chapter 32, “Character data,” on page 331. 

RNAME=resourcename 
Specifies the name of the resource in up to eight characters. If shorter, it is 
padded with blanks; if longer, it is truncated. The name can be: 
v   A FILE name (up to eight characters). 
v   A TS queue name (up to eight characters). 

Note: Although CICS supports TS queue names of up to16 characters, 
DFHCNV only supports TS queue names of up to 8 characters. 

v   A TD queue name (up to four characters). 
v   An IC start transaction id (up to four characters). 
v   The name of the program being linked (up to eight characters).

RPFX=resourceprefix 
Specifies a resource prefix of up to 7 characters for programs, TS queues and 
files; or 3 characters for TD queues and transactions. The resource prefix allows 
resources of a particular type to be grouped together using just one macro. All 
resources of the specified type and prefix will be treated in the same way. 
Order is important, so the most specific resource names should be at the top of 
the converstion table, with the least specific prefixes at the bottom. If none of 
the parameters are specified at this point in the macro, the default template is 
used for all resources within the specified resource type. 

XRNAME=xxxxxxxxxxxxxxxx (RTYPE=TS only) 
Specifies the resource name in hexadecimal notation. It can include up to 16 
hexadecimal digits, padded with blanks if necessary. 

XRPFX=xxxxxxxxxxxxxx (RTYPE=TS only) 
Specifies a resource prefix of up to 14 hexadecimal digits. The resource prefix 
allows resources of a particular type to be grouped together. All resources of 
the specified type and prefix will be treated in the same way. The sequence is 
important, so the most specific resource names should be at the top of the 
conversion table, with the least specific prefixes at the bottom. If none of the 
parameters are specified at this point in the macro, the default template is used 
for all resources within the specified resource type. 

USREXIT={YES|NO∨program} 
Specifies whether the user data conversion exit is called. 

YES 
User-defined conversion is required for this resource. DFHUCNV is 
invoked. Code this if you need your customized version of DFHUCNV to 
convert some data for this resource. 

NO User-defined conversion is not required for this resource. The 
user-replaceable conversion program is not called. Code this to eliminate 
the overhead of calling the program unnecessarily. 

 

362 CICS TS for z/OS 4.1: Intercommunication Guide



program 
User-defined conversion is required for this resource; program is invoked. 
Code this if you need your user-supplied program, program, to convert 
some data for this resource.

CDEPAGE=nnnn 

Restriction: Do not use this parameter for new definitions. It is supported only 
for compatibility with earlier releases. 

The code page must be one of those entered in the CDEPAGE option of the 
DFHCNV TYPE=INITIAL macro. Each possible value is equivalent to a pair of 
CLINTCP and SRVERCP entries or (for user-defined conversion) to a SRVERCP 
entry. The CLINTCP and SRVERCP values to which each value resolves are 
given in the description of the CDEPAGE option of the DFHCNV 
TYPE=INITIAL macro.

DFHCNV TYPE=KEY 
The DFHCNV TYPE=KEY macro is valid only for FC RTYPE requests, and, if 
coded, must immediately follow a DFHCNV TYPE=ENTRY macro. 

The macro has the following format: 
 

TYPE=KEY 
Indicates the start of conversions to be applied to a key. This macro is not 
required if access is only by RRN or RBA. If access is by key but no 
TYPE=KEY statement is present, the key is not converted. You must provide 
matching conversion details (DFHCNV TYPE=FIELD macros) for the key, as 
part of each conversion template that applies to this file, or an INVREQ 
condition may be returned on the file control EXEC CICS request.

DFHCNV TYPE=SELECT 
This is the format of the DFHCNV TYPE=SELECT macro instruction. 

 

TYPE=SELECT 
Indicates the start of conversion definitions (DFHCNV TYPE=FIELD macros) to 
be applied to a record that satisfies the comparison defined in this macro. If 
the defined comparison is not satisfied by the data in the record, the 
conversion program (DFHCCNV) skips to the next TYPE=SELECT macro, until 
it finds a match or reaches the OPTION=DEFAULT macro. Every 
TYPE=SELECT macro must be followed by at least one TYPE=FIELD macro. 

OPTION={COMPARE|DEFAULT} 
States the basic selection options: 

�� DFHCNV TYPE=KEY ��

 

�� DFHCNV TYPE=SELECT ,OPTION= COMPARE 
DEFAULT

 ,OFFSET=nnnn ,DATA='dd...dd' 
,XDATA='xx...xx'

 ��

 

 

Chapter 37. Defining the conversion table 363



COMPARE 
Indicates that the data should be converted according to the specifications 
in the following DFHCNV TYPE=FIELD macros, if the record satisfies the 
comparison defined in this macro (OFFSET and DATA or XDATA options). 

DEFAULT 
Indicates that the data should be converted according to the specifications 
in the following DFHCNV TYPE=FIELD macros, if the record has not 
satisfied the comparison defined in any previous DFHCNV TYPE=SELECT 
COMPARE macro. 

 For each resource entry (started by a TYPE=ENTRY macro) the last 
TYPE=SELECT macro must specify OPTION=DEFAULT. No other 
TYPE=SELECT macro in the entry should specify OPTION=DEFAULT.

The following options are ignored if OPTION=DEFAULT is coded. 

OFFSET=nnnn 
Specifies the byte offset in the record at which the comparison should be made, 
up to a maximum of 65535. 

DATA='dd...dd' 

Restriction: Use only if the data to be tested is defined as 
DATATYP=CHARACTER, SOSI=NO 

Specifies the comparison data as an EBCDIC character string, with a maximum 
length of 255 characters. CICS converts the incoming data from ASCII to 
EBCDIC before checking it against the comparison data, so that EBCDIC is 
compared with EBCDIC. Outgoing data is in EBCDIC, so the comparison is 
made in EBCDIC without conversion. 

XDATA='xx...xx' 

Restriction: Use if DATA option is not used 

Specifies the comparison data as a hexadecimal string, with an even number of 
digits, maximum length 254 digits. Data is compared against this field, without 
conversion.

DFHCNV TYPE=FIELD 
This is the format of the DFHCNV TYPE=FIELD macro instruction, which occurs 
as many times as needed. 

 

 

364 CICS TS for z/OS 4.1: Intercommunication Guide



TYPE=FIELD 
Specifies conversion specifications for a data field. There must be one such 
statement for each field in a record. You cannot code a TYPE=FIELD macro 
until you have coded a TYPE=SELECT macro. 

OFFSET=nnnn 
Specifies the byte offset in the record or key at which the conversion should 
start, up to a maximum of 65535. (For TYPE=KEY conversions, this is the byte 
offset from the start of the key not from the start of the record. The file's FCT 
entry defines the offset of the first byte of the key from the start of the record.) 

DATATYP={CHARACTER|PD|BINARY|USERDATA|GRAPHIC|NUMERIC} 
Specifies the type of conversion required: 

CHARACTER 
Specifies character fields. 

PD Specifies packed decimal data in z/Architecture format. 

 Any packed decimal data in other formats should be defined for 
USERDATA conversion, and the user-replaceable program DFHUCNV 
must contain the necessary conversion code. 

BINARY 
Specifies binary data in big-endian format. 

 By default, BINARY data is not converted. This default action can be 
overridden to allow requests from platforms that support different binary 
architectures to access the same CICS resource using the same conversion 
table. 

USERDATA 
Specifies data to be converted by the user-replaceable program DFHUCNV. 
The DFHCCNV conversion code bypasses these fields. See the USRTYPE 
operand below. 

GRAPHIC 
Specifies fields that contain DBCS characters only. 

NUMERIC 
Specifies that binary fields held on the workstation in INTEL format (for 
example, C Language integer datatype) need to be converted to 
z/Architecture format. Integers (four bytes) or short integers (two bytes) 
can be converted. 

USRTYPE=nnn 
Specifies a value that is made available to the user-replaceable conversion 

�� DFHCNV TYPE=FIELD ,OFFSET=nnnn ,DATATYP= BINARY 
CHARACTER

 

GRAPHIC

 

NUMERIC

 

PD

 

USERDATA

 ,USRTYPE=nnn ,DATALEN=nnnn �

� 
,LAST=YES

 
NO

 

,SOSI=

 

YES

 ��

 

 

Chapter 37. Defining the conversion table 365



program DFHUCNV. The values you provide can be in the range 80 to 128 
(X'50' to X'80'). The default value is 80 (X'50'). If more than one type of 
user-defined conversion is possible, you can use this value to specify to 
DFHUCNV what conversion is needed for each field. 

 This option is ignored if DATATYP=USERDATA is not specified. 

DATALEN=n 
Specifies the length of the data field to be converted, in bytes, up to a 
maximum of 65535. For variable length fields, specify the maximum possible 
length. 

 If DATATYP=NUMERIC, DATALEN must be 2 or 4. 

LAST=YES 
Specifies that this is the last field definition for this TYPE=SELECT statement. 

SOSI=YES|NO  
Enter YES for a mixed string containing SBCS and DBCS characters; enter NO 
for an SBCS string. This field is valid only if DATATYPE=CHARACTER has 
been entered in this macro. The default is NO.

DFHCNV TYPE=FINAL 
The DFHCNV TYPE=FINAL macro instruction ends the table. 

It must occur only once, as the last definition. 
   

Hints on coding the macros 
You can improve the performance of data conversion by coding your macros to 
benefit from the way in which CICS processes the conversion tables. 
1.   Define entries for the most frequently-used resources first, to reduce search 

time. 
2.   Define USERDATA fields in consecutive entries. This reduces the time needed 

by your conversion program to scan the template. 
3.   For variable-length fields, define the maximum length required. (Comparisons 

and conversions are applied to the shorter of the actual data length or the 
template length. For example, if the data is 100 bytes long but the template 
describes 120 bytes, up to 100 bytes are converted. If the data is 100 bytes and 
the template describes 80 bytes, only 80 bytes are converted.) 

4.   If function-shipped data is not accessed by CICS Transaction Server for z/OS 
but only by the connected system, you do not need to specify conversion 
details. For example, when a CICS Transaction Server for z/OS file is used to 
store data that is shared by several ASCII-based systems.

�� DFHCNV TYPE=FINAL ��

 

 

366 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 38. User-defined conversion tables 

If you specify SRVERCP=USR or USRD in a DFHCNV TYPE=ENTRY macro, you 
must provide user-defined conversion tables. The standard conversion program 
(DFHCCNV) uses these tables, and they are made available to the user-replaceable 
conversion program, DFHUCNV. 

Place your user-defined conversion tables in the DFHCNV macro source, anywhere 
after the DFHCNV TYPE=INITIAL macro. 

Tip: For source readability, the best place is probably after the DFHCNV 
TYPE=FINAL macro. 

SRVERCP=USR 

You must provide two character conversion tables, labelled ASTOEB and EBTOAS. 

Each table must be 256 bytes long. ASTOEB is used for ASCII to EBCDIC 
conversion and EBTOAS is used for EBCDIC to ASCII conversion. The 
hexadecimal value of a character byte is used as an offset in the conversion table to 
obtain the converted value of the character. Figure 101 on page 368 illustrates this 
process. 
 

 

© Copyright IBM Corp. 1977, 2011 367



SRVERCP=USRD 

You must provide DBCS character conversion tables labelled DBASTOEB and 
DBEBTOAS, in the DFHCNV source. These must be after the DFHCNV 
TYPE=INITIAL macro, but otherwise anywhere in the source. Each table must be a 
list of 256 four-byte pointers and 256 pairs of 256-byte translate tables. The first 
byte of a DBCS character is used as an index to the list of pointers. Using the first 
byte of the DBCS character as a hexadecimal offset in the list, the pointer found is 
the address of a pair of 256-byte translate tables. The second byte of the DBCS 

ASCII character 47

0 1 2 3 4 5 6 7 8 9 A B C D E F
ASTOEB

0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4 xxxxxxxxxxxxxxA3
5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
E xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

EBCDIC character BC

0 1 2 3 4 5 6 7 8 9 A B C D E F
EBTOAS

0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B xxxxxxxxxxxxxxxxxxxxxxxx23
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
E xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In this example, the ASCII character X' converts to the EBCDIC
character X'A3', and the EBCDIC character X'BC' converts to the
ASCII character X'23'.
These values have no significance, and are used simply to
illustrate the structure of the conversion tables.

47'

  

Figure 101. Structure of SBCS conversion tables

 

368 CICS TS for z/OS 4.1: Intercommunication Guide



character is used as an offset in each of the two 256-byte translate tables to obtain 
the first and second bytes of the converted DBCS character. Figure 102 illustrates 
this process. 

You must also provide an SBCS conversion table as specified under USR above. 
   

( )4*6A)=1A8 6A E9

List of
pointers

Conversion tables
0 1 2 3 4 5 6 7 8 9 A B C D E F

DBASTOEB
00 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
04 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1A8 xxxxxxxx C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. E xxxxxxxxxxxxxxxxxxCC
. F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
.
. 0 1 2 3 4 5 6 7 8 9 A B C D E F
.
. 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

3F8 E xxxxxxxxxxxxxxxxxx22
3FC F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In this example, the double-byte character X'6AE9' converts to X'CC22'.
The value, at offset 6A in the pointer list, is the address of a pair
of 256-byte translate tables. At offset E9 in these tables, the
byte values are X'CC' and X'22' respectively. These are random values,
used purely for illustration.
This is an ASCII-EBCDIC conversion, because the pointer list is
labeled DBASTOEB. A complete set of ASCII-EBCDIC tables
contains 256 pairs of 256-byte tables, one pair for each possible value
of the first byte of a double-byte character.
DBEBTOAS is the label of a similar set of EBCDIC-ASCII tables.

  

Figure 102. Structure of DEBUTS conversion tables

 

Chapter 38. User-defined conversion tables 369



Invalid and undefined DBCS characters 
In ASCII and EBCDIC, certain code ranges are valid DBCS code. Any double-byte 
value outside these ranges is an invalid DBCS character. In the supplied conversion 
tables, invalid DBCS characters convert to X'FFFF', as defined by the code page 
architecture. 

Within the valid code range, several thousand double-byte values are defined as 
actual DBCS characters. A double-byte value within the valid code range, but not 
defined as a DBCS character, is an undefined DBCS character. 

User-defined tables should follow the above conventions for invalid and undefined 
characters. 

 

370 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 39. Example macros 

These examples show the use of the data conversion macros. 

Figure 103 shows an example of a record layout for a file called VSAM99. The key 
is offset 0 for length 6, and the record contains no redefinition. 

 

Figure 104 gives a full set of conversion macros for file VSAM99. Figure 105 shows 
the same conversion expressed more briefly, by combining adjoining fields of the 
same type. 

 

 

02  FILEREC. 
  03  STAT         PIC X. 
  03  NUMB         PIC X(6). 
  03  NAME         PIC X(20). 
  03  ADDRX        PIC X(20). 
  03  PHONE        PIC X(8). 
  03  DATEX        PIC X(8). 
  03  AMOUNT       PIC X(8). 
  03  COMMENT      PIC X(9). 
  03  COUNTER1     PIC 9999 USAGE COMP-4. 
  03  COUNTER2     PIC 9999 USAGE COMP-4. 
  03  ADDLCMT      PIC X(30). 
 
Figure 103. Record layout for VSAM99

    DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037 
    DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99 
    DFHCNV TYPE=KEY 
    DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES 
    DFHCNV TYPE=SELECT,OPTION=DEFAULT 
    DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=1 
    DFHCNV TYPE=FIELD,OFFSET=01,DATATYP=CHARACTER,DATALEN=6 
    DFHCNV TYPE=FIELD,OFFSET=07,DATATYP=CHARACTER,DATALEN=20 
    DFHCNV TYPE=FIELD,OFFSET=27,DATATYP=CHARACTER,DATALEN=20 
    DFHCNV TYPE=FIELD,OFFSET=47,DATATYP=CHARACTER,DATALEN=8 
    DFHCNV TYPE=FIELD,OFFSET=55,DATATYP=CHARACTER,DATALEN=8 
    DFHCNV TYPE=FIELD,OFFSET=63,DATATYP=CHARACTER,DATALEN=8 
    DFHCNV TYPE=FIELD,OFFSET=71,DATATYP=CHARACTER,DATALEN=9 
    DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=2 
    DFHCNV TYPE=FIELD,OFFSET=82,DATATYP=BINARY,DATALEN=2 
    DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES 
    DFHCNV TYPE=FINAL 
 
Figure 104. Full description of VSAM99

    DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037 
    DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99 
    DFHCNV TYPE=KEY 
    DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES 
    DFHCNV TYPE=SELECT,OPTION=DEFAULT 
    DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80 
    DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4 
    DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES 
    DFHCNV TYPE=FINAL 
 
Figure 105. Condensed description of VSAM99

 

© Copyright IBM Corp. 1977, 2011 371



Note: Be careful when combining adjoining fields, even if they are of the same 
data type. Do not combine NUMERIC fields. Do not combine fields defined as 
CHARACTER, if SOSI=YES is specified for one or more of them. Whether you can 
combine USERDATA fields depends on user-defined data structures and 
conversion code. 

Figure 106 shows a redefined record layout for file VSAM99. Figure 107 shows a 
set of conversion macros for the redefined record layout in Figure 106. 

 

 

Figure 108 on page 373 shows user-defined conversion tables, EBTOAS and 
ASTOEB, illustrating how they are preceded with DFHCNV macros in the source 
that is submitted to the assembler. 

 

02  FILEREC. 
  03  STAT         PIC X. 
  03  NUMB         PIC X(6). 
  03  NAME         PIC X(20). 
  03  ADDRX        PIC X(20). 
  03  PHONE        PIC X(8). 
  03  DATEX        PIC X(8). 
  03  AMOUNT       PIC X(8). 
  03  COMMENT      PIC X(9). 
  03  VARINF1. 
  03  COUNTER1     PIC 9999 USAGE COMP-4. 
  03  COUNTER2     PIC 9999 USAGE COMP-4. 
  03  ADDLCMT      PIC X(30). 
  03  VARINF2 REDEFINES VARINF1. 
  03  COUNTER1     PIC 9999 USAGE COMP-4. 
  03  COUNTER2     PIC 9999 USAGE COMP-4. 
  03  COUNTER3     PIC 9999 USAGE COMP-4. 
  03  COUNTER4     PIC 9999 USAGE COMP-4. 
  03  ADDLCMT2     PIC X(26). 
 
Figure 106. Redefined record layout for VSAM99

   DFHCNV TYPE=INITIAL 
   DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99 
   DFHCNV TYPE=KEY 
   DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES 
* 
*  If offset 00 is a character ’X’ use the following 
*  conversion definitions: 
* 
  
   DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=00,DATA=’X’ 
   DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80 
   DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4 
   DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES 
* 
*  Otherwise use the following (default) 
*  conversion definitions 
* 
   DFHCNV TYPE=SELECT,OPTION=DEFAULT 
   DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80 
   DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=8 
   DFHCNV TYPE=FIELD,OFFSET=88,DATATYP=CHARACTER,DATALEN=26,LAST=YES 
   DFHCNV TYPE=FINAL 
 
Figure 107. Description for redefined record layout for VSAM99

 

372 CICS TS for z/OS 4.1: Intercommunication Guide



* 
LABL1    DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037 
* 
         DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM80 
         DFHCNV TYPE=KEY 
         DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=BINARY,DATALEN=2 
         DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=CHARACTER,DATALEN=4,   X 
               LAST=YES 
LABLX    DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=6,XDATA=’C1C2C3’ 
         DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=BINARY,DATALEN=2 
         DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=CHARACTER,DATALEN=4 
         DFHCNV TYPE=FIELD,OFFSET=9,DATATYP=CHARACTER,DATALEN=8,   X 
               LAST=YES 
                          ...
         DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=ABCD 
         DFHCNV TYPE=SELECT,OPTION=DEFAULT 
         DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=40 
         DFHCNV TYPE=FIELD,OFFSET=40,DATATYP=BINARY,DATALEN=4,     X 
               LAST=YES 
LABLN    DFHCNV TYPE=FINAL 
* 
*  EXAMPLE OF A USER-DEFINED CONVERSION TABLE EBCDIC to ASCII 
EBTOAS   DC    XL16’000102030405060708090A0B0C0D0E0F’ 
         DC    XL16’101112131415161718191A1B1C1D1E1F’ 
         DC    XL16’202122232425262728292A2B2C2D2E2F’ 
         DC    XL16’303132333435363738393A3B3C3D3E3F’ 
         DC    XL16’404142434445464748494A4B4C4D4E4F’ 
         DC    XL16’505152535455565758595A5B5C5D5E5F’ 
         DC    XL16’606162636465666768696A6B6C6D6E6F’ 
         DC    XL16’707172737475767778797A7B7C7D7E7F’ 
         DC    XL16’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F’ 
         DC    XL16’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F’ 
         DC    XL16’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’ 
         DC    XL16’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’ 
         DC    XL16’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’ 
         DC    XL16’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’ 
         DC    XL16’E0E1E2A3E4E5E6E7E8E9EAEBECEDEEEF’ 
         DC    XL16’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’ 
* 
*  EXAMPLE OF A USER-DEFINED CONVERSION TABLE ASCII to EBCDIC 
* 
ASTOEB   DC    XL16’000102030405060708090A0B0C0D0E0F’ 
         DC    XL16’101112131415161718191A1B1C1D1E1F’ 
         DC    XL16’202122232425262728292A2B2C2D2E2F’ 
         DC    XL16’303132333435363738393A3B3C3D3E3F’ 
         DC    XL16’404142434445464748494A4B4C4D4E4F’ 
         DC    XL16’505152535455565758595A5B5C5D5E5F’ 
         DC    XL16’606162636465666768696A6B6C6D6E6F’ 
         DC    XL16’707172737475767778797A7B7C7D7E7F’ 
         DC    XL16’808182838485868788898A8B8C8D8E8F’ 
         DC    XL16’909192939495969798999A9B9C9D9E9F’ 
         DC    XL16’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’ 
         DC    XL16’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’ 
         DC    XL16’C0818283848586878889CACBCCCDCECF’ 
         DC    XL16’D0919293949596979899DADBDCDDDEDF’ 
         DC    XL16’E0E1A2A3A4A5A6A7A8A9EAEBECEDEEEF’ 
         DC    XL16’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’ 
         END   DFHCNVBA 
 
Figure 108. SBCS user-defined conversion table

 

© Copyright IBM Corp. 1977, 2011 373



Chapter 40. Assembling and link-editing the conversion 
programs 

You can use either of the standard procedures DFHAUPLE and DFHAUPLK to 
assemble the DFHCNV table. 

About this task 

You can optimize CICS virtual storage use by link-editing the DFHCNV table and 
the DFHUCNV program with a MODE statement specifying AMODE(31) and 
RMODE(ANY). The table and program are then loaded above the 16MB line if 
enough CICS storage is available. 

 

374 CICS TS for z/OS 4.1: Intercommunication Guide



Chapter 41. The user-replaceable conversion program 

This section describes the user-replaceable data conversion program. 

User-named conversion programs 
You can replace DFHUCNV, the default user-replaceable conversion program, by 
one or more user-named conversion programs. 

DFHUCNV is invoked if: 
v   A conversion template is not defined for the resource, or 

v   A conversion template is defined for the resource and the template specifies 
USREXIT=YES.

A user-named conversion program is invoked if: 
v   A conversion template is defined for the resource and the template specifies 

USREXIT=userprogram 

where userprogram is the name of the user-supplied conversion program.

Input to DFHUCNV 
The first statement in the supplied version of DFHUCNV is a DFHCNV 
TYPE=DSECT macro, which generates DSECTs that describe the parameter list and 
the conversion template. 

DFHUCNV starts with a DFHCNV TYPE=DSECT in the following format: 
 

The DFHCNV TYPE=DSECT macro generates the following: 
v   The DFHUNVDS DSECT, which maps the parameter list in the COMMAREA 

passed by DFHCCNV. 
v   An assembler DSECT for field conversion records (these are the basic 

components of a template; see Figure 111 on page 379). 
v   Equates for resource types and field types.

Parameter list (DFHUVNDS) 
The DFHUNVDS DSECT maps the parameter list passed to DFHUCNV in the 
COMMAREA. 

If a parameter is zero, no data is available. If you do not create a conversion template 
for the resource, DFHUCNV is invoked, but only the following fields in the parameter list 
contain data: 
v   UNVRSTP 
v   UNVRNMP 
v   UNVDIRP 
v   UNVOVLY

 

DFHCNV  TYPE=DSECT 

 

© Copyright IBM Corp. 1977, 2011 375



The following is a detailed description of the parameters: 

UNVRSTP 
Points to a one-byte resource type that indicates the resource being referenced 
by this request. The meanings of the resource types are defined in DSECT 
DFHCNVDS. The resource types are FC, IC, TS, TD, and PC. 

UNVRNMP 
Points to an eight-character field containing the resource name, padded with 
blanks if necessary. These may be: 
v   For an FC request, an eight-byte file name 
v   For a TS request, an eight-byte TS queue name 
v   For a TD request, a four-byte TD queue name 
v   For an IC request, a four-byte transaction name 
v   For a PC request, an eight-byte program name.

UNVDIRP 
Points to a one-byte field that shows what conversion is required: 
v   CNVRQATE (X'02') indicates a request needing conversion from client 

encoding to server encoding. 

DFHUNVDS DSECT 
UNVRSTP  DS    AL4                 PTR-TO-RESOURCE TYPE 
UNVRNMP  DS    AL4                 PTR-TO-RESOURCE NAME 
UNVDIRP  DS    AL4                 PTR-TO-CONVERSION DIRECTIVE 
CNVRQATE EQU   X’02’               REQUEST ASCII TO EBCDIC 
CNVRPETA EQU   X’04’               RESPONSE EBCDIC TO ASCII 
UNVDTMP  DS    AL4                 PTR-TO-DATA CONV TEMPLATE 
UNVDLNP  DS    AL4                 PTR-TO-DATA TEMPLATE LENGTH 
UNVKTMP  DS    AL4                 PTR-TO-KEY CONV TEMPLATE 
UNVKLNP  DS    AL4                 PTR-TO-KEY TEMPLATE LENGTH 
UNVATEP  DS    AL4                 PTR-TO-ASCII/EBCDIC TRANS TABLE 
UNVETAP  DS    AL4                 PTR-TO-EBCDIC/ASCII TRANS TABLE 
UNVATED  DS    AL4                 PTR-TO-DBCS ASCII/EBCDIC TRANS TABLE 
UNVETAD  DS    AL4                 PTR-TO-DBCS EBCDIC/ASCII TRANS TABLE 
  
UNVOVLY  DS    0H                  OVERLAY SECTION 
         ORG   UNVOVLY             TS REQUEST OVERLAY 
UNVTSDP  DS    AL4                 PTR-TO-TS DATA 
UNVTSLNP DS    AL4                 PTR-TO-TS DATA LENGTH 
         ORG   UNVOVLY             TD REQUEST OVERLAY 
UNVTDDP  DS    AL4                 PTR-TO-TD DATA 
UNVTDLNP DS    AL4                 PTR-TO-TD DATA LENGTH 
         ORG   UNVOVLY             IC REQUEST OVERLAY 
UNVICDP  DS    AL4                 PTR-TO-IC DATA 
UNVICLNP DS    AL4                 PTR-TO-IC DATA LENGTH 
         ORG   UNVOVLY             PC REQUEST OVERLAY 
UNVPCDP  DS    AL4                 PTR-TO-PC DATA 
UNVPCLNP DS    AL4                 PTR-TO-PC DATA LENGTH 
         ORG   UNVOVLY             FC REQUEST OVERLAY 
UNVFCDP  DS    AL4                 PTR-TO-FC DATA 
UNVFCLNP DS    AL4                 PTR-TO-FC DATA LENGTH 
UNVFCKP  DS    AL4                 PTR-TO-FC KEY 
UNVFCKLP DS    AL4                 PTR-TO-FC KEY  LENGTH 
         ORG   , 
UNVMRTNE DS    A                   PTR-TO-MBCS TRANSLATION ROUTINE 
UNVCLIDP DS    AL4                 A "client" CCSID 
*                                    (for example, 00819) 
UNVSRIDP DS    AL4                 A "server" CCSID 
*                                    (for example, 00285) 
 
Figure 109. DFHUNVDS—DSECT that maps the parameter list passed to DFHUCNV

 

376 CICS TS for z/OS 4.1: Intercommunication Guide



v   CNVRPETA (X'04') indicates a response needing conversion from server 
encoding to client encoding.

UNVDTMP 
Points to the start of the conversion template found by CICS to match this 
resource. If UNVDTMP is zero no template was found. 

UNVDLNP 
Points to a field that gives the length of the conversion template. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

UNVKTMP (file control requests only) 
Points to the start of the template found by CICS for the key part of the 
request or response. If UNVKTMP is zero, either there is no key template or 
the record is accessed by relative record number or relative byte address. 

UNVKLNP (file control requests only) 
Points to a field that gives the length of the key conversion template. The field 
is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

UNVATEP 
Points to a 256-byte SBCS translation table used for converting character data 
from client encoding to server encoding. 

UNVETAP 
Points to a 256-byte SBCS translation table used for converting character data 
from server encoding to client encoding. 

UNVATED 
Points to a DBCS translation table used for converting character data from 
client encoding to server encoding. 

UNVETAD 
Points to a DBCS translation table used for converting character data from 
server encoding to client encoding.

 The overlay section depends on resource type: 

TS requests: 

UNVTSDP 
Points to the start of the TS record being read or written. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

UNVTSLNP 
Points to a field that gives the length of the TS record.

TD requests: 

UNVTDDP 
Points to the start of the TD record being read or written. 

UNVTDLNP 
Points to a field that gives the length of the TD record. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

IC requests: 

 

Chapter 41. The user-replaceable conversion program 377



UNVICDP 
Points to the “from” area of an IC START request. 

UNVICLNP 
Points to a field that gives the length of the “from” area. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

PC requests: 

UNVPCDP 
Points to the start of the COMMAREA being supplied. 

UNVPCLNP 
Points to a field that gives the length of the COMMAREA. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

FC requests: 

UNVFCDP 
Points to the start of the file control record being read or written. 

UNVFCLNP 
Points to a field that gives the length of the file control record. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

UNVFCKP 
Points to the start of the key for the file control record being read or written. 

UNVFCKLP 
Points to a field that gives the length of the key. The field is: 
v   A fullword for CICS Transaction Server for z/OS 
v   A half-word for all other platforms.

UNVMRTNE 
Points to a translation routine that must be used for translations to or from an 
MBCS code page. The relevant client code pages are 954, 964, and 970. 

 The routine expects Register 1 to point to a structure defined by the 
DFHUNVM DSECT: 
DFHUNVM DSECT 
UNVMTABP  DS    AL4            Set to value in UNVATED or UNVETAD 
UNVMINP   DS    AL4            Address of source data 
INVMINL   DS    FL4            Length of source data 
UNVMOUTP  DS    AL4            Address of target buffer 
UNVMOUTL  DS    FL4            Length of target buffer 

UNVCLIDP 
Points to a fullword field that gives the IBM-defined CCSID, for example 
00819, corresponding to the “client” code page. 

UNVSRIDP 
Points to a fullword field that gives the IBM-defined CCSID, for example 
00285, corresponding to the “server” code page.

Conversion and key templates 
In the COMMAREA, fields UNVDTMP and UNVDLNP point to the conversion 
template and its length. 

 

378 CICS TS for z/OS 4.1: Intercommunication Guide



Fields UNVKTMP and UNVKLNP point to the key template and its length. 
Figure 110 illustrates the use and meaning of these fields. 

 

Each type of template consists of field conversion records, one for each field in the 
data record or key. Each field conversion record has the same layout, shown under 
“Field conversion records,” and mapped by a supplied DSECT, DFHCNVDS (see 
“DFHCNVDS, DSECT for field conversion records” on page 380). Figure 111 shows 
the relationship between a template, field conversion records, and DFHCNVDS. 
The figure shows DFHCNVDS overlaying the first field conversion record in a 
template for a data record or key with six fields. 

   

Field conversion records 
This describes the layout of the field conversion records. 

A field conversion record has the following layout: 

 Table 65. Layout of a field conversion record 

CNVRLEN CNVRTYPE Reserved CNVDATTY CNVDATAO CNVDATAL 

Record length Record type Reserved Data type Data offset Data length 

UNVDTMP Conversion template

length

UNVDLNP conversion template length

UNVKTMP Key template

length

UNVKLNP key template length

  

Figure 110. Parameter fields and the conversion templates

CONVERSION OR KEY TEMPLATE

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

DFHCNVDS
DSECT

  

Figure 111. Field conversion records and a conversion or key template

 

Chapter 41. The user-replaceable conversion program 379



Table 65. Layout of a field conversion record (continued) 

CNVRLEN CNVRTYPE Reserved CNVDATTY CNVDATAO CNVDATAL 

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5-8 Byte 9-12
  

In Table 65 on page 379, record length and type refer to the length and type of the 
field conversion record. The names in the top row are those used in the DSECT 
DFHCNVDS which maps field conversion records (see Figure 112 on page 381. A 
template has as many field conversion records as are necessary to describe all the 
fields in the data record or key. 

For DFHUCNV, CNVRLEN is X'0C' CNVRTYPE is always X'04' (field). DFHUCNV 
must interpret CNVDATTY values in the range X'50' through X'80' according to 
user specifications, and apply the appropriate conversions. DFHUCNV should 
ignore fields with CNVDATTY values outside the range X'50' to X'80'. 

EQUATEs in DFHCNVDS 
DFHCNVDS contains EQUATEs that are useful in your conversion program. 

For resource type addressed by the parameter list 
          CNVFC           FILE CONTROL 
          CNVTS           TEMPORARY STORAGE 
          CNVTD           TRANSIENT DATA 
          CNVIC           INTERVAL CONTROL 
          CNVPC           PROGRAM CONTROL 

For field type in the template 

Two additional EQUATEs, DTUSRMIN and DTUSRMAX, define the limits of the 
range of data types (X'50' to X'80') reserved for user definition. Ensure that 
DFHUCNV can deal with any data type in this range that can be used in your 
installation. 
          DTBIN           BINARY 
          DTPD            PACKED DECIMAL 
          DTCHAR          CHARACTER 
          DTMIX           MIXED CHARACTER 
          DTDBCS          DBCS CHARACTER 
          DTNUM           INTEL INTEGER 

The supplied DFHUCNV program contains examples of the use of CNVTS, 
DTUSRMIN, and DTUSRMAX—see “Supplied user-replaceable conversion 
program” on page 381. 

DFHCNVDS, DSECT for field conversion records 
 

 

380 CICS TS for z/OS 4.1: Intercommunication Guide



Supplied user-replaceable conversion program 
The supplied version of DFHUCNV checks for a resource type of TS. If it finds 
one, it scans down the passed template looking for fields defined with a type in 
the user-data range. If any are present, DFHUCNV converts them as characters; 
you can rewrite the conversion code to your own requirements. 

Figure 113 on page 382 lists the version of DFHUCNV supplied with CICS (Version 
2.2 and later). Both versions are written in assembler. 

Study the supplied version of DFHUCNV and its introductory comments. This will 
enable you to write your own conversion program. Your program must be able to 
handle 31-bit addresses. 

DFHCNVDS DSECT 
* 
*        PROVIDES A MAPPING OF THE FIELD CONVERSION RECORDS USED 
*        WHEN DECIDING WHETHER TO CONVERT USER DATA. 
*        A SET OF FIELD DEFINITIONS MAKE UP A TEMPLATE 
* 
CNVRLEN  DS    AL1                 LENGTH OF THIS RECORD 
CNVRTYPE DS    XL1                 TYPE OF RECORD 
* 
*        EQUATES FOR RECORD TYPES 
* 
CNVTFLD  EQU   X’04’               FIELD (ONLY VALID TYPE IN 
*                                  TEMPLATE) 
CNVOVLY  DS    0H 
** 
** 
         ORG   CNVOVLY             TYPE FIELD 
         DS    XL1                 RESERVED 
CNVDATTY DS    XL1                 DATA TYPE 
* 
*        EQUATES FOR DATA TYPES 
* 
DTBIN    EQU   X’01’               BINARY 
DTPD     EQU   X’02’               PACKED DECIMAL 
DTCHAR   EQU   X’03’               CHARACTER 
DTMIX    EQU   X’04’               MIXED CHARACTER 
DTDBCS   EQU   X’05’               DBCS 
DTNUM    EQU   X’06’               NUMERIC 
DTUSRMIN EQU   X’50’               MINIMUM USER DATA TYPE 
DTUSRMAX EQU   X’80’               MAXIMUM USER DATA TYPE 
* 
CNVDATAO DS    AL4                 DATA OFFSET 
CNVDATAL DS    AL4                 DATA LENGTH 
** 
* 
*        EQUATES FOR RESOURCE TYPES 
* 
CNVFC    EQU   X’01’               FILE CONTROL 
CNVTS    EQU   X’02’               TEMP STORAGE 
CNVTD    EQU   X’03’               TRANS DATA 
CNVIC    EQU   X’05’               INTERVAL CONTROL 
CNVPC    EQU   X’06’               PROGRAM CONTROL 
 
Figure 112. DFHCNVDS, DSECT that maps conversion/key templates passed to DFHUCNV

 

Chapter 41. The user-replaceable conversion program 381



User-replaceable conversion program 
This topic shows the source of the user-replaceable conversion program. 

  
*   MODULE NAME = DFHUCNV 
* 
* DESCRIPTIVE NAME = C.I.C.S./....... 
**       CICS TS for Windows USER CONVERSION SAMPLE PROGRAM 
** 
* 
* TRANSACTION NAME = Cxxx 
**       NOT A TRANSACTION 
* 
* STATUS =n.n.n 
* 
* FUNCTION = 
*        THIS IS A SAMPLE PROGRAM FOR USER DATA CONVERSION 
*        IT IS INVOKED AS A RESULT OF A FUNCTION 
*        SHIPPED REQUEST OR RESPONSE VIA THE LU2 REMOTE SERVER 
*        OR LU6.2 HOST MIRROR PROGRAM. IT IS ACTUALLY  CICS 
*        LINKED FROM DFHCCNV TO ALLOW A USER PROGRAM TO 
*        CONVERT DATA OF TYPE USERDATA AS DEFINED IN THE 
*        CICS TS for Windows CONVERSION MACROS (DFHCNV). 
* 
*        THIS PROGRAM IS CALLED FOR EACH EXEC CICS REQUEST/RESPONSE 
*        FOR WHICH DATA EXISTS FOR CONVERSION FROM ASCII TO EBCDIC. 
*        IF A REQUEST DOES NOT CONTAIN ANY SUCH DATA, THIS PROGRAM 
*        IS NOT INVOKED. THE PROGRAM IS INVOKED BEFORE THE CICS 
*        CONVERSION PROGRAM (DFHCCNV) ATTEMPTS ANY CONVERSION 
*        INBOUND FROM CICS TS for Windows (ASCII TO EBCDIC) OR 
*        OUTBOUND FROM CICS TS for Windows (EBCDIC TO ASCII). 
* 
*        A COMMAREA IS  PASSED WITHIN WHICH IS A SERIES OF POINTERS 
*        TO INFORMATION THAT CAN BE USED BY THE PROGRAM TO 
*        DETERMINE HOW TO CONVERT ANY RELEVANT DATA. THIS PROGRAM 
*        SHOULD ONLY CONVERT DATA OF TYPE USERDATA AS INDICATED IN 
*        THE CONVERSION TEMPLATES. ANY DATA OF TYPE CHARACTER 
*        WILL BE CONVERTED BY THE CICS CONVERSION MODULE DFHCCNV. 
* 
*        SEE A LATER DESCRIPTION FOR WHAT THE SAMPLE DOES 
* 
 
Figure 113. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
1)

 

382 CICS TS for z/OS 4.1: Intercommunication Guide



* NOTES : 
*    DEPENDENCIES = S/370 
*        IN A CICS MVS/XA ENVIRONMENT, THIS PROGRAM SHOULD  BE 
*          LINKED WITH RMODE(ANY) AND RMODE(31). ALL ADDRESSES SHOULD 
*          BE TREATED AS 31 BIT. 
*    RESTRICTIONS = 
*          NONE 
*    REGISTER CONVENTIONS = 
*          STANDARD EXEC 
*    PATCH LABEL = Via DFHPATCH macro 
*    MODULE TYPE = EXECUTABLE 
*    PROCESSOR = ASSEMBLER 
*    ATTRIBUTES = READ ONLY, SERIALLY REUSABLE 
* 
* ENTRY POINT = DFHUCNV 
* 
*     PURPOSE = 
*         THIS IS THE ONLY ENTRY POINT FOR ALL FUNCTIONS 
* 
*     LINKAGE = 
*         EXEC CICS LINK FROM DFHCCNV IS THE ONLY WAY THIS PROGRAM 
*         IS INVOKED 
* 
*     INPUT = 
*         THE PARAMETERS ARE PASSED USING A COMMAREA AND THE 
*         DSECT DFHUNVDS DESCRIBES THE STRUCTURE OF THESE PARAMETERS 
*         THIS DSECT IS INCLUDED IN THIS PROGRAM BY ISSUING THE 
*         DFHCNV TYPE=DSECT MACRO CALL. 
* 
*     OUTPUT = 
*         NO SPECIFIC PARAMETERS  ARE RETURNED, AS THE PURPOSE OF 
*         THIS PROGRAM IS PERFORM CONVERSION ON USER DATA. 
* 
*     EXIT-NORMAL = 
*         NORMAL RETURN IS VIA AN EXEC CICS RETURN 
* 
*     EXIT-ERROR = 
**        SAME AS EXIT NORMAL 
* 
*------------------------------------------------------------------ * 
* 
* EXTERNAL REFERENCES = 
*         NONE 
* 
*     ROUTINES = 
*         NONE 
* 
*     DATA AREAS = 
*         NONE 
* 
 
Figure 114. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
2)

 

Chapter 41. The user-replaceable conversion program 383



*     CONTROL BLOCKS = 
*         THE 2 MAIN CONTROL BLOCKS REFERENCED ARE 
*        DFHUNVDS 
*         DESCRIBES THE PARAMETER LIST PASSED IN THE COMMAREA FROM 
*         DFHCCNV. IT IS BASICALLY CONSISTS OF A LIST OF POINTERS 
*         TO INFORMATION OF INTEREST TO THIS USER PROGRAM. THE FIRST 
*         PART OF THE LIST IS FIXED, AND THE SECOND PART CONSISTS 
*         OF OVERLAYS DEPENDING ON THE RESOURCE TYPE IN QUESTION. 
*        DFHCNVDS 
*         DESCRIBES THE STRUCTURE OF INDIVIDUAL FIELDS IN THE 
*         PASSED TEMPLATE. 
* 
*     GLOBAL VARIABLES = 
*         NONE 
* 
* TABLES = 
*         DATA FROM THE DFHCNV TABLE IS USED BUT THE NECESSARY 
*         ADDRESSES ARE OBTAINED BY DFHCCNV AND PASSED IN THE 
*         COMMAREA 
* 
* MACROS = 
*         NONE 
* 
*------------------------------------------------------------------ * 
* 
* DESCRIPTION 
*    WHAT THIS SAMPLE DOES 
* 
*        DFHUCNV EXECUTES AS AN EXEC CICS PROGRAM. 
*        DFHUCNV IS CALLED FOR ALL EXEC CICS REQUESTS/RESPONSES THAT 
*        HAVE RESULTED FROM A CICS TS for Windows FUNCTION SHIP REQUEST 
*        AND MAY REQUIRE CONVERSION OF USER DATA FROM ASCII TO EBCDIC 
*        OR VICE VERSA. THE FIRST THING THAT THE SAMPLE DOES IS TO 
*        OBTAIN ADDRESSABILITY TO THE PASSED COMMAREA, AND THEN 
*        CHECK THAT THE REQUEST IS A TEMPORARY STORAGE (TS) REQUEST. 
*        IF NOT WE JUST RETURN. 
*        NEXT WE CHECK IF DFHCCNV MANAGED TO LOCATE A CONVERSION 
*        TEMPLATE FOR THE RESOURCE (TS QUEUE) WITH THIS NAME. 
*        IF ONE WAS NOT FOUND (UNVDTMP IS ZERO) THIS MEANS THAT 
*        NO CONVERSION INFORMATION WAS PROVIDED (USING DFHCNV MACROS) 
*        FOR THIS RESOURCE. IN THIS CASE WE WILL NEVER BE ABLE TO 
*        LOCATE ANY USERDATA FIELDS, SO WE JUST RETURN. 
*        ASSUMING WE DID HAVE A TEMPLATE, WE NOW SCAN DOWN THE 
*        TEMPLATE USING THE SUPPLIED TEMPLATE PTR AND LENGTH. THE 
*        MAPPING OF THIS IS PROVIDED BY DFHCNVDS WHICH GIVES 
*        THE STRUCTURE OF THE CONSTITUENT FIELDS. 
*        EACH FIELD IS EXAMINED, AND WHEN ONE OF TYPE USERDATA 
*        IS FOUND WE DO SOME FURTHER CHECKS AS FOLLOWS. 
* 
 
Figure 115. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
3)

 

384 CICS TS for z/OS 4.1: Intercommunication Guide



*        IT IS POSSIBLE THAT THE CONVERSION TEMPLATE HAS 
*        DEFINITIONS FOR OFFSETS (AND OFFSETS PLUS LENGTHS) THAT ARE 
*        GREATER THAN THE ACTUAL DATA ON THE EXEC REQUEST/RESPONSE. 
*        OBVIOUSLY IT IS VERY IMPORTANT TO DETERMINE THE LESSER OF 
*        THE ACTUAL DATA AND THE PARTICULAR TEMPLATE FIELD DEFINITION 
*        TO ENSURE WE DO NOT PERFORM CONVERSION OFF THE END OF THE 
*        REAL DATA. ONCE THESE CHECKS ARE DONE THE USERDATA FIELD 
*        CAN BE TRANSLATED AS APPROPRIATE. PURELY AS AN EXAMPLE, 
*        THE SAMPLE PROGRAM CONVERTS THE USERDATA FIELDS AS CHARACTER, 
*        BUT IN A REAL PROGRAM, YOU WOULD PERFORM YOUR OWN SPECIAL 
*        TESTING AND CONVERSION AT THIS POINT. 
*        THIS LAST STEP IS REPEATED FOR EACH FIELD IN THE TEMPLATE 
*        OF TYPE USERDATA, UNTIL THE END OF THE TEMPLATE IS FOUND, 
*        AT WHICH TIME A RETURN IS MADE TO THE CALLER (DFHCCNV). 
* 
*        WHEN WRITING A VERSION OF THIS PROGRAM TO EXECUTE IN A 
*        CICS MVS/XA ENVIRONMENT, YOU MUST BE PREPARED TO HANDLE 
*        ALL ADDRESSES AS POSSIBLY 31 BIT, AS DFHCCNV AND THE 
*        DFHCNV TABLE (CONTAINING THE TEMPLATES) WILL BE LOADED 
*        ABOVE THE 16M LINE. 
* 
*    CAVEAT 
* 
*        FULLWORD VALUES ARE NOW PASSED IN THE FOLLOWING 
*        FIELDS: 
* 
*          CNVDATAL 
*          CNVDATAO 
* 
*          UNVFCLNP 
*          UNVFCKLP 
*          UNVICLNP 
*          UNVPCLNP 
*          UNVTDLNP 
*          UNVTSLNP 
* 
********************************************************************* 
 
Figure 116. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
4)

 

Chapter 41. The user-replaceable conversion program 385



DFHCNV TYPE=DSECT 
DFHUCNV  CSECT 
         B     IDBYP 
         DFHVM UCNV,ENTRY=DFHUCNV,RMODE=ANY 
IDBYP    DS    0H 
         DFHREGS , 
         OC    EIBCALEN,EIBCALEN   ANY COMMAREA ? 
         BZ    RETURN              NO, JUST RETURN 
         L     R2,DFHEICAP 
         USING DFHUNVDS,R2         ADDRESSABILITY TO COMMAREA 
         L     R10,UNVRSTP         ADDRESS THE RESOURCE TYPE 
         CLI   0(R10),CNVTS        IS IT A TEMPORARY STORAGE TYPE 
         BNE   RETURN              NO, JUST RETURN 
         ICM   R10,B’1111’,UNVDTMP IS THERE A CONVERSION TEMPLATE ? 
         BZ    RETURN              NO, JUST RETURN 
         USING DFHCNVDS,R10        ADDRESSABILITY TO CONVERSION RECS 
         L     R4,UNVDLNP 
         L     R5,0(0,R4)          GET TOTAL TEMPLATE LENGTH 
         AR    R5,R10              END OF TEMPLATE 
PROCESS  DS    0H 
         CR    R10,R5              HAVE WE REACHED THE END OF TEMPL 
         BNL   RETURN              YES 
         CLI   CNVRTYPE,CNVTFLD    DOUBLE CHECK ITS A FIELD TYPE REC 
         BNE   RETURN              NO, BETTER RETURN 
         CLI   CNVDATTY,DTUSRMIN   IN THE USER RANGE ? 
         BL    NEXTREC             NO, TOO LOW 
         CLI   CNVDATTY,DTUSRMAX   IN THE USER RANGE ? 
         BH    NEXTREC             NO, TOO HIGH 
         L     R4,UNVDIRP          CHECK THE TYPE OF CONVERSION 
         CLI   0(R4),CNVRQATE      ASCII TO EBCDIC REQUEST 
         BNE   TRYEBC              NO... 
         L     R6,UNVATEP          YES, ADDRESS THE RELEVANT TABLE 
         B     CONT1 
TRYEBC   DS    0H                  MUST BE EBCDIC TO ASCII 
         L     R6,UNVETAP          ADDRESS THE RELEVANT TABLE 
CONT1    DS    0H 
* 
*        GET LOWER VALUE OF ACTUAL LENGTH AND POTENTIAL LENGTH 
*        INTO R4 
         L     R4,UNVTSLNP 
         L     R4,0(0,R4)          PICK UP ACTUAL TS DATA LENGTH 
         LTR   R4,R4               JUST CHECK ITS POSITIVE 
         BNP   RETURN              IF NOT RETURN 
         L     R7,CNVDATAO         GET THE OFFSET FROM THE TEMPLATE 
         CR    R7,R4               IS THE OFFSET PAST THE DATA 
         BNL   NEXTREC             YES, TRY THE NEXT RECORD 
         A     R7,CNVDATAL         ADD IN THE LENGTH(TEMPLATE) 
         CR    R7,R4               COMPARE OFFSET+LEN WITH REAL DATA 
         BH    LENOK 
         LR    R4,R7 
LENOK    DS    0H 
 
Figure 117. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
5)

 

386 CICS TS for z/OS 4.1: Intercommunication Guide



*        HERE R4 SHOULD BE THE SMALLER OF THE 2 LENGTHS 
*        NOW CALCULATE THE  REAL LENGTH FOR CONVERSION 
         S     R4,CNVDATAO         SUBTRACT THE OFFSET 
         L     R7,UNVTSDP          ADDRESS ACTUAL DATA 
         A     R7,CNVDATAO         ....PLUS OFFSET 
* 
*  R7 POINTS AT THE START OF WHERE WE TRANSLATE AND R4 
*  INDICATES THE LENGTH (ENSURING WE DONT GO FURTHER THAN THE 
*  ACTUAL DATA) 
* 
TRANSMOR DS    0H 
         CH    R4,=H’256’          AT LEAST 256 BYTES TO DO 
         BL    TRREST              NO 
         TR    0(256,R7),0(R6)     TRANSLATE 256 BYTES 
         SH    R4,=H’256’          DECREMENT THE COUNT 
         AH    R7,=H’256’          INCREMENT THE POINTER 
         B     TRANSMOR            DO SOME MORE 
TRREST   DS    0H 
         LTR   R4,R4               ANY LEFT TO DO ? 
         BNP   DONETR              NO 
         SH    R4,=H’1’            DECREMENT THE COUNTER FOR THE TR 
         EX    R4,TRNSLT 
         B     DONETR 
TRNSLT   TR    0(0,R7),0(R6) 
DONETR   DS    0H                  ALL DATA TRANSLATED 
NEXTREC  DS    0H 
         SR    R4,R4 
         IC    R4,CNVRLEN          GET LENGTH OF THIS RECORD 
         AR    R10,R4              AND ADDRESS THE NEXT ONE 
         B     PROCESS 
RETURN   DS    0H 
         EXEC  CICS RETURN 
        END   DFHUCNV 
 
Figure 118. DFHUCNV, user-replaceable conversion program for z/OS to Windows link (Part 
6)

 

Chapter 41. The user-replaceable conversion program 387



388 CICS TS for z/OS 4.1: Intercommunication Guide



Part 8. Appendixes 

 

© Copyright IBM Corp. 1977, 2011 389



390 CICS TS for z/OS 4.1: Intercommunication Guide



Appendix A. Intercommunication rules and restrictions 
checklist 

This appendix provides a checklist of the rules and restrictions that apply to 
intersystem communication and multiregion operation. 

Most of these rules and restrictions also appear in the body of the book. The rules 
apply to: 
v   “Transaction routing” 
v   “Dynamic routing of DPL requests” on page 393 
v   “Automatic transaction initiation” on page 393 
v   “Basic mapping support” on page 393 
v   “Acquiring LUTYPE6.1 sessions” on page 393 
v   “Syncpointing” on page 394 
v   “Local and remote names” on page 394 
v   “Master terminal transaction” on page 394 
v   “Installation and operations” on page 394 
v   “Resource definition” on page 394 
v   “Customization” on page 394 
v   “MRO abend codes” on page 395

Transaction routing 
Review this checklist of the rules and restrictions that apply to transaction routing. 
v   A transaction routing path between a terminal and a transaction must not turn 

back on itself. For example, if system A specifies that a transaction is on system 
B, system B specifies that it is on system C, and system C specifies that it is on 
system A, the attempt to use the transaction from system A is abended when 
system C tries to route back to system A. 
This restriction also applies if the routing transaction, CRTE, is used to establish 
all or part of a path that turns back on itself. 

v   Transaction routing using the following “terminals” is not supported: 
–   LUTYPE6.1 sessions. 
–   MRO sessions. 
–   IBM 7770 and 2260 terminals. 
–   Pipeline logical units with pooling. 
–   MVS system consoles. Messages entered through a console can be directed to 

any CICS system using the MODIFY command.
v   The transaction CEOT is not supported by the transaction routing facility. 
v   The execution diagnostic facility (EDF) can be used in single-terminal mode to 

test a remote transaction. 
EDF running in two-terminal mode is supported only when both of the 
terminals and the user transaction are on the same system; that is, when no 
transaction routing is involved. 

v   The user area of the TCTTE is updated at task-attach and task-detach times. 
Therefore, a user exit program running on the terminal-owning region and 
examining the user area while the terminal is running a remote transaction does 

 

© Copyright IBM Corp. 1977, 2011 391



not necessarily see the same values as a user exit running at the same time in 
the application-owning region. Note also that the user areas must be defined as 
having the same length in both systems. 

v   All programs, tables, and maps that are used by a transaction must be on the 
system that owns the transaction. The programs, tables, and maps can be 
duplicated in as many systems as necessary. 

v   When transaction routing to or from APPC devices, CICS does not support CPI 
Communications conversations with sync level characteristics of 
CM_SYNC_POINT. 

v   TCTUAs are not shipped when the principal facility is an APPC parallel session. 
v   For a transaction started by a terminal-related EXEC CICS START command to 

be eligible for enhanced routing, all of the following conditions must be met: 
–   The START command is a member of the subset of eligible START 

commands; that is, it meets all the following conditions: 
-   The START command specifies the TERMID option, which names the 

principal facility of the task that issues the command; that is, the 
transaction to be started must be terminal-related, and associated with the 
principal facility of the starting task. 

-   The principal facility of the task that issues the START command is not a 
surrogate client virtual terminal. 

-   The SYSID option of the START command does not specify the name of a 
remote region; that is, the remote region on which the transaction is to be 
started must not be specified explicitly.

–   The requesting region and the TOR, if they are different, are connected by one 
of the following links: 
-   An MRO link 
-   An APPC parallel-session link

–   The TOR and the target region are connected by one of the following links: 
-   An MRO link. 
-   An APPC single- or parallel-session link. If an APPC link is used, at least 

one of the following must be true: 
1.   Terminal-initiated transaction routing has previously taken place over 

the link. 
2.   CICSPlex SM is being used for routing.

–   The transaction definition in the requesting region specifies ROUTABLE(YES). 
–   If the transaction is to be routed dynamically, the transaction definition in the 

TOR specifies DYNAMIC(YES). 
For more information about enhanced routing, see “Routing transactions 
invoked by START commands” on page 78. 

v   For a non-terminal-related START request to be eligible for enhanced routing, all 
of the following conditions must be met: 
–   The requesting region and the target region are connected by one of the 

following links: 
-   An MRO link. 
-   An APPC single- or parallel-session link. If an APPC link is used, and the 

distributed routing program is to be called on the target region, at least one 
of the following must be true: 
1.   Terminal-initiated transaction routing has previously taken place over 

the link. 
2.   CICSPlex SM is being used for routing.

 

392 CICS TS for z/OS 4.1: Intercommunication Guide



–   The transaction definition in the requesting region specifies ROUTABLE(YES). 
–   If the request is to be routed dynamically, these conditions must be met: 

-   The transaction definition in the requesting region specifies 
DYNAMIC(YES). 

-   The SYSID option of the START command does not specify the name of a 
remote region; that is, the remote region on which the transaction is to be 
started must not be specified explicitly. 

For more information about enhanced routing, see “Routing transactions 
invoked by START commands” on page 78. 

v   The following types of dynamic transaction routing requests cannot be 
daisy-chained: 
–   Non-terminal-related START requests 
–   CICS business transaction services processes and activities

Dynamic routing of DPL requests 
For a distributed program link request to be eligible for dynamic routing, the 
remote program must either be defined to the local system as DYNAMIC, or not 
be defined to the local system. 

Daisy-chaining of dynamically-routed DPL requests is not supported—see 
“Daisy-chaining of DPL requests” on page 101. 

Automatic transaction initiation 
v   A terminal-associated transaction that is initiated by the transient data trigger 

level facility must reside on the same system as the transient data queue that 
causes its initiation. This restriction applies to both macro-level and 
command-level application programs. 

v   There are restrictions on the dynamic routing of transactions initiated by EXEC 
CICS START commands—see the list of conditions in “Transaction routing” on 
page 391.

Basic mapping support 
v   BMS support must reside on each system that owns a terminal through which 

paging commands can be entered. 
v   A BMS ROUTE request cannot be used to send a message to a selected remote 

operator or operator class unless the terminal at which the message is to be 
delivered is specified in the route list.

Acquiring LUTYPE6.1 sessions 
v   If an application tries to acquire an LUTYPE6.1 connection, and the remote 

system is unavailable, the connection is placed out of service. 
v   If the remote system is a CICS system that uses AUTOCONNECT, the 

connection is placed back in service when the initialization of the remote system 
is complete. 

v   If the remote system does not specify AUTOCONNECT(YES|ALL), or if it is a 
non-CICS system that does not have autoconnect facilities, you must place the 
connection back in service by using a CEMT SET CONNECTION command or 
by issuing an EXEC CICS SET CONNECTION command from an application 
program.

 

Appendix A. Intercommunication rules and restrictions checklist 393



Syncpointing 
SYNCPOINT ROLLBACK commands are supported by APPC, IPIC, and MRO 
sessions. 

Local and remote names 
Local names are translated to remote names according to these rules. 
v   Transaction identifiers are translated from local names to remote names when a 

request to execute a transaction is transmitted from one CICS system to another. 
However, a transaction identifier specified in an EXEC CICS RETURN command 
is not translated when it is transmitted from the application-owning region to 
the terminal-owning region. 

v   Terminal identifiers are translated from local names to remote names when a 
transaction routing request to execute a transaction on a specified terminal is 
shipped from one CICS system to another. 
However if an EXEC CICS START command specifying a terminal identification 
is function shipped from one CICS system to another, the terminal identification 
is not translated from local name to remote name.

Master terminal transaction 
Only locally-owned terminals can be queried and modified by the master terminal 
transaction CEMT. The only terminals visible to this transaction are those owned 
by the system on which the master terminal transaction is running. 

Installation and operations 
v   Module DFHIRP must be made LPA-resident; otherwise jobs and console 

commands may abend on completion. 
v   Interregion communication requires subsystem interface (SSI) support. 
v   Do not install more than one APPC connection between an LU-LU pair. 
v   Do not install an APPC and an LUTYPE6.1 connection at the same time between 

an LU-LU pair. 
v   Do not install more than one MRO connection between the same two CICS 

regions. 
v   Do not install more than one generic EXCI connection on a CICS region.

Resource definition 
v   The PRINTER and ALTPRINTER options for a VTAM terminal must (if 

specified) name a printer owned by the same system as the one that owns the 
terminal being defined. 

v   The terminals listed in the terminal list table (DFHTLT) must reside on the same 
system as the terminal list table.

Customization 
v   Communication between node error programs, user exits, and user programs is 

the responsibility of the user. 
v   Transactions that recover input messages for protected tasks after a system crash 

must run on the same system as the terminal that invoked the protected task.

 

394 CICS TS for z/OS 4.1: Intercommunication Guide



MRO abend codes 
v   An IRC transaction in send state is unable to receive an error reason code if its 

partner has to abend. It abends itself with code AZI2, which should be 
interpreted as a general indication that the other side is no longer there. The real 
reason for the failure can be read from the CSMT destination of the CICS region 
that first detected the error. For example, a security violation in attaching a 
back-end transaction is reported as such by the front end only if the initiating 
command is CONVERSE and not SEND.

 

Appendix A. Intercommunication rules and restrictions checklist 395



396 CICS TS for z/OS 4.1: Intercommunication Guide



Appendix B. CICS mapping to the APPC architecture 

This appendix shows how the APPC programming language is implemented by 
CICS. 

The APPC programming language is described in the SNA publication, Transaction 
Programmer's Reference Manual for LU Type 6.2) This appendix contains the 
following topics: 
v   “Supported option sets.” 

This is a table showing which APPC option sets are supported by CICS and 
which are not. 

v   “CICS implementation of control operator verbs” on page 398. 
This section describes how CICS implements the APPC control operator verbs. It 
includes tables showing how these verbs map to CICS commands. 

v   “CICS deviations from APPC architecture” on page 406. 
This section describes the way in which the CICS implementation of APPC 
differs from the architecture described in the Format and Protocol Reference 
Manual: Architecture Logic for LU Type 6.2.

For information on how the CICS application programming interface for basic and 
unmapped conversations maps to the APPC verbs, see the CICS Distributed 
Transaction Programming Guide. 

Supported option sets 
 Table 66. CICS support of APPC options sets 

Set # Set name Supported 

101 Clear the LU's send buffer Yes 

102 Get attributes Yes 

103 Post on receipt with test for posting No 

104 Post on receipt with wait No 

105 Prepare to receive Yes 

106 Receive immediate 
Note: CICS programs support receive_immediate requests provided these 
requests are coded using the common programming Interface for 
communications. 

Yes 

108 Sync point services Yes 

109 Get TP name and instance identifier No 

110 Get conversation type Yes 

111 Recovery from program errors detected during syncpoint Yes 

201 Queued allocation of a contention-winner session No 

203 Immediate allocation of a session Yes 

204 Conversations between programs located at the same LU No 

211 Session-level LU-LU verification Yes 

212 User ID verification Yes 

 

© Copyright IBM Corp. 1977, 2011 397



Table 66. CICS support of APPC options sets (continued) 

Set # Set name Supported 

213 Program-supplied user ID and password No 

214 User ID authorization Yes 

215 Profile verification and authorization Yes 

217 Profile pass-through No 

218 Program-supplied profile No 

241 Send PIP data Yes 

242 Receive PIP data Yes 

243 Accounting Yes 

244 Long locks No 

245 Test for request-to-send received Yes 

246 Data mapping No 

247 FMH data No 

249 Vote read-only response to a syncpoint operation No 

251 Extract transaction and conversation identity information No 

290 Logging of data in a system log No 

291 Mapped conversation LU services component Yes 

401 Reliable one-way brackets No 

501 CHANGE_SESSION_LIMIT verb Yes 

502 ACTIVATE_SESSION verb Yes 

504 DEACTIVATE_SESSION verb No 

505 LU-definition verbs Yes 

601 MIN_CONWINNERS_TARGET parameter No 

602 RESPONSIBLE(TARGET) parameter No 

603 DRAIN_TARGET(NO) parameter No 

604 FORCE parameter No 

605 LU-LU session limit No 

606 Locally known LU names Yes 

607 Uninterpreted LU names No 

608 Single-session reinitiation No 

610 Maximum RU size bounds Yes 

611 Session-level mandatory cryptography No 

612 Contention-winner automatic activation limit No 

613 Local maximum (LU, mode) session limit Yes 

616 CPSVCMG modename support No 

617 Session-level selective cryptography No
  

CICS implementation of control operator verbs 
CICS supports control operator verbs in a variety of ways. 

 

398 CICS TS for z/OS 4.1: Intercommunication Guide



Some verbs are supported by the CICS master terminal transaction CEMT. The 
relevant CEMT commands are: 
v   CEMT INQUIRE CONNECTION 
v   CEMT SET CONNECTION 
v   CEMT INQUIRE MODENAME 
v   CEMT SET MODENAME

CEMT is normally entered by an operator at a display device. It is described in 
CEMT master terminal, in the CICS Supplied Transactions manual. 

The inquire and set operations for connections and modenames are also available 
at the CICS API, using the following commands: 
v   EXEC CICS INQUIRE CONNECTION 
v   EXEC CICS SET CONNECTION 
v   EXEC CICS INQUIRE MODENAME 
v   EXEC CICS SET MODENAME

Programming information about these commands is given in INQUIRE 
CONNECTION, in the CICS System Programming Reference manual. 

Some control operator verbs are supported by CICS resource definition. The 
definition of APPC links is described in “Defining APPC connections” on page 167. 
Details of the resource-definition syntax are given in the CICS Resource Definition 
Guide. 

With resource definition online, the CEDA transaction can be used to change some 
CONNECTION and SESSION options while CICS is running. With macro-level 
definition, the corresponding options are fixed for the duration of the CICS run. 

Control operator verbs 
The following tables show how APPC control operator verbs are implemented by 
CICS. 

See “Return codes for control operator verbs” on page 405 for details of the 
corresponding return-code mapping. 

Note: Wherever CEMT is shown, the equivalent form of EXEC CICS command can 
be used. 

 Table 67. CHANGE_SESSION_LIMIT 

CHANGE_SESSION_LIMIT CEMT SET MODENAME 

LU_NAME(vble) CONNECTION( ) 

MODE_NAME(vble) MODENAME( ) 

LU_MODE_SESSION_LIMIT(vble) AVAILABLE( ) 

MIN_CONWINNERS_SOURCE(vble) CICS negotiates a revised value, based on the 
AVAILABLE request and the MAXIMUM value on the 
DEFINE SESSIONS for the group. 

MIN_CONWINNERS_TARGET(vnle) Not supported. 

RESPONSIBLE(source) Yes. 

RESPONSIBLE(target) Not supported. CICS does not support receipt of 
RESP(TARGET). 

 

Appendix B. CICS mapping to the APPC architecture 399



Table 67. CHANGE_SESSION_LIMIT (continued) 

CHANGE_SESSION_LIMIT CEMT SET MODENAME 

RETURN_CODE Supported.
  

 Table 68. INITIALIZE_SESSION_LIMIT 

INITIALIZE_SESSION_LIMIT DEFINE SESSIONS (CICS resource definition) 

LU_NAME(vble) CONNECTION( ) 

MODE_NAME(vble) MODENAME( ) 

LU_MODE_SESSION_LIMIT(vble) MAXIMUM(value1,) 

MIN_CONWINNERS_SOURCE(vble) MAXIMUM( ,value2) 

MIN_CONWINNERS_TARGET(vnle) Not supported. 

RETURN_CODE Supported.
  

 Table 69. PROCESS_SESSION_LIMIT 

PROCESS_SESSION_LIMIT Automatic action by CICS-supplied transaction CLS1 
when CNOS is received by a target CICS system. 

RESOURCE(vble) Connection RDO. 

LU_NAME(vble) Passed internally. 

MODE_NAME(vble1,vble2) Passed internally. 

RETURN_CODE Supported.
  

 Table 70. RESET_SESSION_LIMIT 

RESET_SESSION_LIMIT CEMT SET MODENAME (for individual modegroups) 
or CEMT SET CONNECTION RELEASED (to reset all 
modegroups) 

LU_NAME(vble) CONNECTION( ) 

MODE_NAME(ALL) SET CONNECTION( ) RELEASED 

MODE_NAME(ONE(vble)) MODENAME( ) AVAILABLE(0) 

MODE_NAME(ONE('SNASVCMG')) SET CONNECTION( ) RELEASED 

RESPONSIBLE(SOURCE) Yes. 

RESPONSIBLE(TARGET) Not supported. 

DRAIN_SOURCE(NO|YES) CICS supports YES. 

DRAIN_TARGET(NO|YES) CICS supports YES. 

FORCE(NO|YES) Not supported. 

RETURN_CODE Supported.
  

 Table 71. ACTIVATE_SESSION 

ACTIVATE_SESSION CEMT SET MODENAME ACQUIRED (for individual 
modegroups) or CEMT SET CONNECTION 
ACQUIRED (for SNASVCMG sessions) 

LU_NAME(vble) CONNECTION( ) 

MODE_NAME(vble) MODENAME( ) ACQUIRED 

MODE_NAME('SNASVCMG') Activated when CEMT SET CONNECTION ACQUIRED 
is issued. 

 

400 CICS TS for z/OS 4.1: Intercommunication Guide



Table 71. ACTIVATE_SESSION (continued) 

ACTIVATE_SESSION CEMT SET MODENAME ACQUIRED (for individual 
modegroups) or CEMT SET CONNECTION 
ACQUIRED (for SNASVCMG sessions) 

RETURN_CODE Supported.
  

 Table 72. DEACTIVATE_CONVERSATION_GROUP 

DEACTIVATE_CONVERSATION_GROUP Not supported.
  

 Table 73. DEACTIVATE_SESSION 

DEACTIVATE_SESSION Not supported.
  

 Table 74. DEFINE_LOCAL_LU 

DEFINE_LOCAL_LU DEFINE SESSIONS + DFHSIT macro (CICS resource 
definitions) 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. CICS uses the network LU name 
(APPLID on DFHSIT). 

LU_SESSION_LIMIT(NONE) Not supported. 

LU_SESSION_LIMIT(VALUE(vble)) Total of MAX(nn) on all sessions. 

SECURITY(ADD USER_ID(vble)) In an external security manager (ESM). 

SECURITY(ADD PASSWORD(vble)) Not supported; defined in an ESM. 

SECURITY(ADD PROFILE(vble)) Not supported; defined in an ESM. 

SECURITY(DELETE USER_ID(vble)) Supported in an ESM. 

SECURITY(DELETE PASSWORD(vble)) Not supported; defined in an ESM. 

MAP_NAME(ADD(vble)) Not supported. 

MAP_NAME(DELETE(vble)) Not supported. 

BIND_RSP_QUEUE_CAPACITY(YES|NO) Not supported.
  

 Table 75. DEFINE_MODE 

DEFINE_MODE EXEC CICS CONNECT PROCESS + 
MODEENT macro (ACF/VTAM systems 
definition) + DEFINE SESSIONS (CICS 
resource definition) 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. LU identified via 
CONNECTION on SESSIONS. 

MODE_NAME(vble) MODENAME on SESSIONS is mapped to 
LOGMODE on MODEENT. 

SEND_MAX_RU_SIZE_LOWER_BOUND 
(vble) 

Fixed at 8. 

SEND_MAX_RU_SIZE_UPPER_BOUND 
(vble) 

SENDSIZE on SESSIONS. 

PREFERRED_RECEIVE_RU_SIZE (vble) Not supported. 

PREFERRED_SEND_RU_SIZE (vble) Not supported. 

RECEIVE_MAX_RU_SIZE_LOWER 
_BOUND (vble) 

Fixed at 256. 

 

Appendix B. CICS mapping to the APPC architecture 401



Table 75. DEFINE_MODE (continued) 

DEFINE_MODE EXEC CICS CONNECT PROCESS + 
MODEENT macro (ACF/VTAM systems 
definition) + DEFINE SESSIONS (CICS 
resource definition) 

RECEIVE_MAX_RU_SIZE_UPPER _BOUND 
(vble) 

RECEIVESIZE on SESSIONS. 

SINGLE_SESSION_REINITIATION 
OPERATOR 

Not supported. 

SINGLE_SESSION_REINITIATION PLU Not supported. 

SINGLE_SESSION_REINITIATION SLU Not supported. 

SINGLE_SESSION_REINITIATION 
PLU_OR_SLU 

Not supported. 

SESSION_LEVEL_CRYPTOGRAPHY 
(NOT_SUPPORTED) 

Default. 

SESSION_LEVEL_CRYPTOGRAPHY 
(MANDATORY) 

Not supported. 

SESSION_LEVEL_CRYPTOGRAPHY 
(SELECTIVE) 

Not supported. 

CONWINNER_AUTO_ACTIVATE_LIMIT 
(vble) 

MAXIMUM(,value2) on SESSIONS. 

SESSION_DEACTIVATED_TP_NAME (vble) Not supported. 

LOCAL_MAX_SESSION_LIMIT (vble) MAXIMUM(nn,) on SESSIONS.
  

 Table 76. DEFINE_REMOTE_LU 

DEFINE_REMOTE_LU DEFINE CONNECTION (CICS resource definition) 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. 

LOCALLY_KNOWN_LU_NAME(NONE) Not supported. 

LOCALLY_KNOWN_LU_NAME (NAME(vble)) CONNECTION(name) 

UNINTERPRETED_LU_NAME(NONE) Defaults to CONNECTION(name). 

UNINTERPRETED_LU_NAME (NAME(vble)) NETNAME on CONNECTION. 

INITIATE_TYPE(INITIATE_ONLY) Not supported. 

INITIATE_TYPE(INITIATE_OR_QUEUE) Not supported. 

PARALLEL_SESSION_SUPPORT(YES|NO) SINGLESESS(NO|YES) on CONNECTION. 

CNOS_SUPPORT(YES|NO) Always YES. 

LU_LU_PASSWORD(NONE) Default on CONNECTION. 

LU_LU_PASSWORD(VALUE(vble)) BINDPASSWORD on CONNECTION, or SESSKEY in 
RACF APPCLU profile. 

SECURITY_ACCEPTANCE(NONE) ATTACHSEC(LOCAL) 

SECURITY_ACCEPTANCE (CONVERSATION) ATTACHSEC(VERIFY) 

SECURITY_ACCEPTANCE (ALREADY_VERIFIED) ATTACHSEC(IDENTIFY) or ATTACHSEC(PERSISTENT).
  

 Table 77. DEFINE_TP 

DEFINE_TP DEFINE TRANSACTION (CICS resource definition) 

TP_NAME(vble) TRANSACTION(name) 

 

402 CICS TS for z/OS 4.1: Intercommunication Guide



Table 77. DEFINE_TP (continued) 

DEFINE_TP DEFINE TRANSACTION (CICS resource definition) 

STATUS(ENABLED) STATUS(ENABLED) 

STATUS(TEMP_DISABLED) Not supported. 

STATUS(PERM_DISABLED) STATUS(DISABLED) 

CONVERSATION_TYPE(MAPPED|BASIC) Supported for all TPs (determined by choice of 
command). 

SYNC_LEVEL(NONE|CONFIRM∨SYNCPT) SYNCPT for all TPs (actual level specified on CONNECT 
PROCESS). 

SECURITY_REQUIRED(NONE) Not supported; defined in an ESM. 

SECURITY_REQUIRED(CONVERSATION) Not supported; defined in an ESM. 

SECURITY_REQUIRED (ACCESS(PROFILE)) Not supported. 

SECURITY_REQUIRED (ACCESS(USER_ID)) Not supported; defined in an ESM. 

SECURITY_REQUIRED (ACCESS(USER_ID_PROFILE)) Not supported. 

SECURITY_ACCESS(ADD(USER_ID(vble))) Transaction can be redefined. 

SECURITY_ACCESS(ADD(PROFILE(vble))) Transaction can be redefined. 

SECURITY_ACCESS (DELETE(USER_ID(vble))) Transaction can be redefined. 

SECURITY_ACCESS (DELETE(PROFILE(vble))) Transaction can be redefined. 

PIP(NO) Specified for all TPs. 

PIP(YES(vble)) Specified on CONNECT PROCESS. 

PIP(NO_LU_VERIFICATION) Default for all PIP data. 

DATA_MAPPING(NO|YES) DATA_MAPPING(NO) for all TPs. 

FMH_DATA(NO|YES) FMH_DATA(YES) for all TPs. 

PRIVILEGE(NONE) Not supported. 

PRIVILEGE(CNOS) Not supported. 

PRIVILEGE(SESSION_CONTROL) Not supported. 

PRIVILEGE(DEFINE) Not supported. 

PRIVILEGE(DISPLAY) Not supported. 

PRIVILEGE(ALLOCATE_SERVICE_TP) Not supported. 

INSTANCE_LIMIT(vble) Not supported. 

RETURN_CODE Supported.
  

 Table 78. DELETE 

DELETE EXEC CICS DISCARD 

LOCAL_LU_NAME(vble) Not supported. 

REMOTE_LU_NAME Not supported. 

MODE_NAME Not supported. 

TP_NAME DISCARD TRANSACTION( ) 

RETURN_CODE Supported.
 

 

Appendix B. CICS mapping to the APPC architecture 403



Table 79. DISPLAY_LOCAL_LU 

DISPLAY_LOCAL_LU CEMT INQUIRE CONNECTION + CEMT INQUIRE 
MODENAME + CEMT INQUIRE TRANSACTION 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified in CICS. The APPLID on DFHSIT 
serves as identifier for the local LU. Specific information 
can be had by identifying the remote LU. Otherwise, the 
universal ID * can be used. 

LU_SESSION_LIMIT(vble) MAXIMUM on INQ MODENAME. 

LU_SESSION_COUNT(vble) ACTIVE on INQ MODENAME 

SECURITY(vble) Not available. 

MAP_NAMES(vble) Not supported. 

REMOTE_LU_NAMES(vble) INQ CONNECTION(*) 

TP_NAMES(vble) INQ TRANSACTION(*) 

BIND_RSP_QUEUE_CAPABILITY(vble) Not supported. 

RETURN_CODE Supported.
  

 Table 80. DISPLAY_REMOTE_LU 

DISPLAY_REMOTE_LU CEMT INQUIRE CONNECTION + CEMT INQUIRE 
MODENAME 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified; CONNECTION or MODENAME 
may be used. 

LOCALLY_KNOWN_LU_NAME(vble) CONNECTION name. 

UNINTERPRETED_LU_NAME(vble) NETNAME on INQ CONNECTION. 

INITIATE_TYPE(vble) Not supported. 

PARALLEL_SESSION_SUPPORT(vble) SINGLESESS(Y|N) on CEDA VIEW. 

CNOS_SUPPORT(vble) Always YES. 

SECURITY_ACCEPTANCE_LOCAL_LU (vble) Not available. 

SECURITY_ACCEPTANCE_REMOTE_LU (vble) Not available. 

MODE_NAMES(vble) CEDA VIEW SESSIONS with locally-known LU name. 

RETURN_CODE Supported.
  

 Table 81. DISPLAY_MODE 

DISPLAY_MODE CEMT INQUIRE MODENAME + CEMT INQUIRE 
TERMINAL 

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. 

MODE_NAME(vble) MODENAME. 

LOCAL_MAX_SESSION_LIMIT(vble) AVA on CEMT INQ MODENAME. 

CONVERSATION_GROUP_IDS(vble) Not supported. 

SEND_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 8. 

SEND_MAX_RU_SIZE_UPPER_BOUND (vble) Not available. 

RECEIVE_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 256. 

RECEIVE_MAX_RU_SIZE_UPPER_BOUND (vble) Not available. 

PREFERRED_SEND_RU_SIZE(vble) Not supported. 

PREFERRED_RECEIVE_RU_SIZE(vble) Not supported. 

 

404 CICS TS for z/OS 4.1: Intercommunication Guide



Table 81. DISPLAY_MODE (continued) 

DISPLAY_MODE CEMT INQUIRE MODENAME + CEMT INQUIRE 
TERMINAL 

SINGLE_SESSION_REINITIATION(vble) Not supported. 

SESSION_LEVEL_CRYPTOGRAPHY(vble) Not available. 

SESSION_DEACTIVATED_TP_NAME Not supported. 

CONWINNER_AUTO_ACTIVATE_LIMIT (vble) Not available. 

LU_MODE_SESSION_LIMIT(vble) MAXIMUM on INQ MODENAME. 

MIN_CONWINNERS(vble) Not supported. 

MIN_CONLOSERS(vble) Not supported. 

TERMINATION_COUNT(vble) Not supported. 

DRAIN_LOCAL_LU(vble) Not supported. 

DRAIN_REMOTE_LU(vble) Not supported. 

LU_MODE_SESSION_COUNT(vble) ACTIVE on INQ MODENAME. 

CONWINNERS_SESSION_COUNT(vble) Not available. 

CONLOSERS_SESSION_COUNT(vble) Not available. 

SESSION_IDS(vble) INQ TERMINAL(*). 

RETURN_CODE Supported.
  

 Table 82. DISPLAY_TP 

DISPLAY_TP CEMT INQUIRE TRANSACTION 

TP_NAME(vble) TRANSACTION(tranid) 

STATUS(vble) ENABLED/DISABLED. 

CONVERSATION_TYPE(vble) CICS TPs allow both types. 

SYNC_LEVEL(vble) CICS TPs allow all sync levels. 

SECURITY_REQUIRED(vble) Not available. 

SECURITY_ACCESS(vble) Not available. 

PIP(vble) CICS TPs allow PIP YES and NO. 

DATA_MAPPING(vble) Always NO. 

FMH_DATA(vble) Always YES. 

PRIVILEGE(vble) Not supported. 

INSTANCE_LIMIT(vble) Not supported. 

INSTANCE_COUNT(vble) CEMT INQ TRAN( ) 

RETURN_CODE Supported.
  

Return codes for control operator verbs 
The CEMT INQUIRE and SET CONNECTION or MODENAME, and the 
equivalent EXEC CICS commands, cause CICS to start up the LU services manager 
asynchronously. 

Some of the errors that may occur are detected by CEMT, or the CICS API, and are 
passed back immediately. Other errors are not detected until a later time, when the 
LU services manager transaction (CLS1) runs. 

 

Appendix B. CICS mapping to the APPC architecture 405



If CLS1 detects errors, it causes messages to be written to the CSMT log, as shown 
in Table 83. In normal operation, the CICS master terminal operator may not want 
to inspect the CSMT log when a command has been issued. So in general, the 
operator, after issuing a command to change parameters (for example, SET 
MODENAME( ) ... ) should wait for a few seconds for the request to be carried out 
and then reissue the INQUIRE version of the command to check that the requested 
change has been made. In the few cases when an error occurs, the master terminal 
control operator can refer to the CSMT log. 

If CEMT is driven from the menu panel, it is very simple to perform the above 
sequence of operations. 

The message used to report the results of CLS1 execution is DFHZC4900. The 
explanatory text that accompanies the message varies and is summarized in 
Table 83. Refer to the CICS Messages and Codes manual for a full description of the 
message. In certain cases, DFHZC4901 is also issued to give further information. 

 Table 83. Messages triggered by CLS1 

APPC RETURN CODE CICS MESSAGE 

OK DFHZC4900 result = SUCCESSFUL 

ACTIVATION_FAILURE_RETRY DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = 0 

ACTIVATION_FAILURE_NO_RETRY DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = 0 

ALLOCATION_ERROR Checked by CEMT. If allocation fails, SYSTEM NOT 
ACQUIRED is returned to the operator. 

COMMAND_RACE_REJECT DFHZC4900 result = RACE DETECTED 

LU_MODE_SESSION_LIMIT_CLOSED DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = 0 

LU_MODE_SESSION_LIMIT_EXCEEDED DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = (negotiated value) 

LU_MODE_SESSION_LIMIT_NOT_ZERO DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = (negotiated value) 

LU_MODE_SESSION_LIMIT_ZERO DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = 0 

LU_SESSION_LIMIT_EXCEEDED DFHZC4900 result = VALUES AMENDED + DFHZC4901 
MAX = (negotiated value) 

PARAMETER_ERROR Checked by CEMT. 

REQUEST_EXCEEDS_MAX_ALLOWED Checked by CEMT. 

RESOURCE_FAILURE_NO_RETRY The LU services manager transaction (CLS1) abends with 
abend code ATNI. 

UNRECOGNIZED_MODE_NAME DFHZC4900 result = MODENAME NOT RECOGNIZED
  

CICS deviations from APPC architecture 
This section describes the way in which the CICS implementation of APPC differs 
from the architecture described in the Format and Protocol Reference Manual: 
Architecture Logic for LU Type 6.2. 

There is one deviation: 

 

406 CICS TS for z/OS 4.1: Intercommunication Guide



v   CICS implementation: CICS checks incoming BIND requests for valid 
combinations of the CNOS indicator (BIND RQ byte 24 bit 6) and the 
PARALLEL-SESSIONS indicator (BIND RQ byte 24 bit 7). If an incorrect 
combination is found (that is, PARALLEL-SESSIONS specified but CNOS not 
specified), CICS sends a negative response to the BIND request. 
APPC architecture: The secondary logical unit (SLU), or BIND request receiver, 
should negotiate the CNOS and PARALLEL-SESSIONS indicators to the 
supported level and return them in the BIND response. The SLU should not 
check for an incorrect combination of these indicators.

APPC transaction routing deviations from APPC architecture 
A transaction program cannot use ISSUE SIGNAL while in syncfree, syncsend, or 
syncreceive state. Attempting to do so may result in a state check. This single 
deviation applies only to APPC transaction routing. 

 

Appendix B. CICS mapping to the APPC architecture 407



408 CICS TS for z/OS 4.1: Intercommunication Guide



Notices 

This information was developed for products and services offered in the U.S.A. 
IBM may not offer the products, services, or features discussed in this document in 
other countries. Consult your local IBM representative for information on the 
products and services currently available in your area. Any reference to an IBM 
product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, 
program, or service that does not infringe any IBM intellectual property right may 
be used instead. However, it is the user's responsibility to evaluate and verify the 
operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter 
described in this document. The furnishing of this document does not give you 
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A. 

For license inquiries regarding double-byte (DBCS) information, contact the IBM 
Intellectual Property Department in your country or send inquiries, in writing, to: 

IBM World Trade Asia Corporation 
Licensing 
2-31 Roppongi 3-chome, Minato-ku 
Tokyo 106, Japan 

The following paragraph does not apply in the United Kingdom or any other 
country where such provisions are inconsistent with local law: 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or 
implied warranties in certain transactions, therefore this statement may not apply 
to you. 

This publication could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will be 
incorporated in new editions of the publication. IBM may make improvements 
and/or changes in the product(s) and/or the program(s) described in this 
publication at any time without notice. 

Licensees of this program who want to have information about it for the purpose 
of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact IBM United Kingdom 
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. 

 

© Copyright IBM Corp. 1977, 2011 409



Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee. 

The licensed program described in this document and all licensed material 
available for it are provided by IBM under terms of the IBM Customer Agreement, 
IBM International Programming License Agreement, or any equivalent agreement 
between us. 

Trademarks 
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of 
International Business Machines Corp., registered in many jurisdictions worldwide. 
A current list of IBM trademarks is available on the Web at Copyright and 
trademark information at www.ibm.com/legal/copytrade.shtml. 

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Oracle and/or its affiliates. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States, other countries, or both. 

UNIX is a registered trademark of The Open Group in the United States and other 
countries. 

Other product and service names might be trademarks of IBM or other companies. 

 

410 CICS TS for z/OS 4.1: Intercommunication Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


Bibliography 

CICS books for CICS Transaction Server for z/OS 
General 
   CICS Transaction Server for z/OS Program Directory, GI13-0536 
   CICS Transaction Server for z/OS What's New, GC34-6994 
   CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3, GC34-6996 
   CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-6997 
   CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-6998 
   CICS Transaction Server for z/OS Installation Guide, GC34-6995

Access to CICS 
   CICS Internet Guide, SC34-7021 
   CICS Web Services Guide, SC34-7020

Administration 
   CICS System Definition Guide, SC34-6999 
   CICS Customization Guide, SC34-7001 
   CICS Resource Definition Guide, SC34-7000 
   CICS Operations and Utilities Guide, SC34-7002 
   CICS RACF Security Guide, SC34-7003 
   CICS Supplied Transactions, SC34-7004

Programming 
   CICS Application Programming Guide, SC34-7022 
   CICS Application Programming Reference, SC34-7023 
   CICS System Programming Reference, SC34-7024 
   CICS Front End Programming Interface User's Guide, SC34-7027 
   CICS C++ OO Class Libraries, SC34-7026 
   CICS Distributed Transaction Programming Guide, SC34-7028 
   CICS Business Transaction Services, SC34-7029 
   Java Applications in CICS, SC34-7025

Diagnosis 
   CICS Problem Determination Guide, GC34-7034 
   CICS Performance Guide, SC34-7033 
   CICS Messages and Codes, SC34-7035 
   CICS Diagnosis Reference, GC34-7038 
   CICS Recovery and Restart Guide, SC34-7012 
   CICS Data Areas, GC34-7014 
   CICS Trace Entries, SC34-7013 
   CICS Supplementary Data Areas, GC34-7015 
   CICS Debugging Tools Interfaces Reference, GC34-7039

Communication 
   CICS Intercommunication Guide, SC34-7018 
   CICS External Interfaces Guide, SC34-7019

Databases 
   CICS DB2 Guide, SC34-7011 
   CICS IMS Database Control Guide, SC34-7016 

 

© Copyright IBM Corp. 1977, 2011 411



CICS Shared Data Tables Guide, SC34-7017

CICSPlex SM books for CICS Transaction Server for z/OS 
General 
   CICSPlex SM Concepts and Planning, SC34-7044 
   CICSPlex SM Web User Interface Guide, SC34-7045

Administration and Management 
   CICSPlex SM Administration, SC34-7005 
   CICSPlex SM Operations Views Reference, SC34-7006 
   CICSPlex SM Monitor Views Reference, SC34-7007 
   CICSPlex SM Managing Workloads, SC34-7008 
   CICSPlex SM Managing Resource Usage, SC34-7009 
   CICSPlex SM Managing Business Applications, SC34-7010

Programming 
   CICSPlex SM Application Programming Guide, SC34-7030 
   CICSPlex SM Application Programming Reference, SC34-7031

Diagnosis 
   CICSPlex SM Resource Tables Reference, SC34-7032 
   CICSPlex SM Messages and Codes, GC34-7035 
   CICSPlex SM Problem Determination, GC34-7037

Other CICS publications 
The following publications contain further information about CICS, but are not 
provided as part of CICS Transaction Server for z/OS, Version 4 Release 1. 
   Designing and Programming CICS Applications, SR23-9692 
   CICS Application Migration Aid Guide, SC33-0768 
   CICS Family: API Structure, SC33-1007 
   CICS Family: Client/Server Programming, SC33-1435 
   CICS Family: Interproduct Communication, SC34-6853 
   CICS Family: Communicating from CICS on System/390, SC34-6854 
   CICS Transaction Gateway for z/OS Administration, SC34-5528 
   CICS Family: General Information, GC33-0155 
   CICS 4.1 Sample Applications Guide, SC33-1173 
   CICS/ESA 3.3 XRF Guide , SC33-0661

Other IBM publications 
The following publications contain information about related IBM products. 

IMS 
   IMS Communications and Connections Guide, SC18-9703 
   IMS Installation Guide, GC18-9710 
   IMS Operations and Automation Guide, SC18-9716

MVS 
   z/OS MVS Setting Up a Sysplex, SA22-7625

 

412 CICS TS for z/OS 4.1: Intercommunication Guide



Network Program Products 
   Network Program Products General Information, GC30-3350

Systems Application Architecture (SAA) 
   SAA Common Programming Interface Communications Reference, SC26-4399

Systems Network Architecture (SNA) 
   Concepts and Products, GC30-3072 
   Format and Protocol Reference Manual: Architecture Logic, SC30-3112 
   Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2, 

SC30-3269 
   Format and Protocol Reference Manual: Distribution Services, SC30-3098 
   Reference: Peer Protocols, SC31-6808-1 
   Sessions Between Logical Units, GC20-1868 
   SNA Formats, GA27-3136 
   Technical Overview, GC30-3073 
   Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084

VTAM 
   VTAM Customization, LY43-0075 
   VTAM Data Areas for MVS Volume 1, LY43-0076 
   VTAM Data Areas MVS Volume 2, LY43-0077 
   VTAM Diagnosis, LY43-0078 
   VTAM Migration Guide, GC31-6416 
   VTAM Messages and Codes, GC31-6418 
   VTAM Network Implementation Guide, GC31-6419 
   VTAM Operation, GC31-6420 
   VTAM Programming, SC31-6421 
   VTAM Release Guide, GC31-6441 
   VTAM Resource Definition Reference, SC31-6428

 

Bibliography 413



414 CICS TS for z/OS 4.1: Intercommunication Guide



Accessibility 

Accessibility features help a user who has a physical disability, such as restricted 
mobility or limited vision, to use software products successfully. 

You can perform most tasks required to set up, run, and maintain your CICS 
system in one of these ways: 
v   using a 3270 emulator logged on to CICS 
v   using a 3270 emulator logged on to TSO 
v   using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features 
for people with disabilities. You can use this product to provide the accessibility 
features you need in your CICS system. 

 

© Copyright IBM Corp. 1977, 2011 415



416 CICS TS for z/OS 4.1: Intercommunication Guide



Index 

A
ACCESSMETHOD 164 
acquired, connection status 194 
ACTION attribute

TRANSACTION definition 295 
ACTION option 294 
advanced peer-to-peer networking 

(APPN) 121 
affinities

CICS Interdependency Analyzer 69 
affinity, between generic resource and 

partner LU 133 
AID (automatic initiate descriptor) 70 
ALLOCATE command

LUTYPE6.1 sessions 
(CICS-to-IMS) 264, 265 

making APPC sessions available 
for 195 

setting LUTYPE6.1 connection 
in-service after SYSIDERR 393 

alternate facility
default profile 230 
defined 241 

AOR (application-owning region) 65 
APPC

autoinstall
of parallel-session links 170 
of single-session terminals 172 

basic conversations 21 
class of service 22 
link definition 167 
link definition for terminals 171 
LU services manager 21, 167 
mapped conversations 21 
mapping to APPC architecture 397 
master terminal operations 193 
modeset definition 169 
overview 20 
parallel-sessions

autoinstall 170 
defining persistent sessions 174 

persistent sessions 174, 320 
single-sessions

autoinstall 170, 172 
defining persistent sessions 175 
definition 171 
limitations 21 

synchronization levels 21 
APPC terminals

API for 88 
as alternate facility 88 
autoinstall 170 
effect of AUTOCONNECT option on 

TYPETERM 174 
link definition for 171 
persistent sessions 175 
remote definition of 213 
shipping terminal definition of 214 
transaction routing

with ALLOCATE 66, 87, 88 
use of CEMT commands with 172 

application programming
CICS mapping to APPC verbs 397 
CICS-to-IMS 257 
for asynchronous processing 251 
for DPL 247 
for function shipping 243 
for transaction routing 253 
LUTYPE6.1 conversations 

(CICS-to-IMS) 257 
overview 241 

application-owning region (AOR) 65 
applid

generic, for XRF 187 
of local CICS 148, 149 
relation to sysid 149 
relation to sysidnt 149 
specific, for XRF 187 

APPLID
passing with START command 48 

APPLID table 153, 156 
APPN (advanced peer-to-peer 

networking) 121 
architected processes

modifying the default definitions 233 
process names 232 
resource definition 232 

architected processes (models) 232 
ASSIGN command in AOR 254 
asynchronous processing

application programming 251 
canceling remote transactions 47 
CICS-to-IMS 259 
compared with synchronous 

processing (DTP) 45 
defining remote transactions 210 
examples 53 
information passed with START 

command 48 
information retrieval 52 
initiated by DTP 46 
local queuing 51 
NOCHECK option 49 
performance improvement 49 
PROTECT option 50 
queuing due to 51 
RETRIEVE command 52 
SEND and RECEIVE interface 47 

CICS-to-IMS applications 264 
START and RETRIEVE interface 46, 

47 
CICS-to-IMS applications 259 

starting remote transactions 47 
system programming 

considerations 53 
terminal acquisition 52 
typical application 45 

attaching remote transactions
LUTYPE6.1 sessions 

(CICS-to-IMS) 266 
AUTOCONNECT option

APPC resource definitions 173 

AUTOCONNECT option (continued)
effect on CEMT commands for 

APPC 194 
on DEFINE CONNECTION

for APPC 173 
on DEFINE SESSIONS

for APPC 173 
on DEFINE TYPETERM for APPC 

terminals 174 
autoinstall

deletion of shipped terminal 
definitions 283 

of APPC parallel sessions 170 
of APPC single sessions

initiated by BIND request 170 
initiated by CINIT request 172 

of APPC single-session terminals 172 
user program, DFHZATDY 171 

automatic initiate descriptor (AID) 70 
automatic transaction initiation (ATI)

and transaction routing 69 
by transient data trigger level 235 
definition of 69 
restriction with routing 

transaction 92 
restriction with shipped terminal 

definitions 215 
rules and restrictions summary 393 
with asynchronous processing 48 
with terminal-not-known 

condition 71 

B
back-end transaction

defined 241 
LUTYPE6.1 sessions 

(CICS-to-IMS) 269 
basic conversations 21 
basic mapping support (BMS)

rules and restrictions summary 393 
with transaction routing 91, 253 

binary integers (INTEL format), 
conversion of 365 

BIND
sender and receiver 22 

BUILD ATTACH command
LUTYPE6.1 sessions 

(CICS-to-IMS) 264, 267 

C
C programming language, integer 

datatype conversion 365 
CANCEL command 47 
CEMT master terminal transaction

DELETSHIPPED option 285 
restriction with remote terminals 394 
with APPC terminals 172 
with routing transaction 92 

 

© Copyright IBM Corp. 1977, 2011 417



chain of RUs format 258 
chained-mirror situation 39 
channel-to-channel communication 19 
CICS Interdependency Analyzer 69 
CICS mapping to APPC architecture 397 

deviations 406 
deviations from APPC 

architecture 406 
CICS-to-CICS communication

defining compatible nodes
APPC sessions 170 
MRO sessions 164 

CICS-to-IMS communication
application design 257 
application programming 257 
asynchronous processing 259 

CICS front end 260 
IMS front end 261 

chain of RUs format 258 
comparison of CICS and IMS 257 
data formats 257 
defining compatible nodes 177 
forms of communication 259 
RETRIEVE command 263 
SEND and RECEIVE interface 264 
START and RETRIEVE interface 259 
START command 262 
VLVB format 258 

CICSplex
controlling with CICSPlex SM 30, 69, 

101 
performance of

using VTAM generic 
resources 121 

transaction routing in 30 
CICSPlex SM

used to control routing of DPL 
requests 101, 209 

used to control transaction 
routing 30, 69 

class of service (COS) 22 
modeset 22, 167 
modifying default profiles to provide 

modename 231 
CLINTCP 356 
CNOS negotiation 195 
command sequences

LUTYPE6.1 sessions 
(CICS-to-IMS) 273 

common programming interface 
communications (CPI Communications)

defining a partner 228 
PIP data 21 
synchronization levels 21 

communication profiles 229 
configuration 115 
CONNECTION definition

PSRECOVERY option 175 
connection quiesce protocol (CQP) 304 
connections

defining IPIC 150 
connections to remote systems

acquired, status of 194 
acquiring a connection 194 
defining 147 
freeing, status of 198 
released, status of 198 

connections to remote systems (continued)
releasing the connection 198 
restrictions on number 20, 167 

contention loser 22 
contention winner 22 
conversation

LUTYPE6.1 sessions 
(CICS-to-IMS) 271 

CONVERSE command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
conversion templates 356, 357, 379, 381 

field conversion records 379, 380, 381 
CQP, see connection quiesce 

protocol 304 
cross-system coupling facility (XCF)

overview 26 
used for interregion 

communication 25 
cross-system MRO (XCF/MRO)

overview 26 
CRTE transaction 91 
CRTX, CICS-supplied transaction 

definition 225 
CSD (CICS system definition file)

shared between regions
dual-purpose RDO 

definitions 224 

D
data conversion

Arabic conversions 336 
assembling/link-editing the 

conversion programs 374 
Baltic Rim conversions 337 
binary integers (INTEL format) 365 
C programming language, integer 

datatype 365 
character data 331 
conversion process 349 
conversion templates 357 
Cyrillic conversions 337 
defining the conversion table 355, 

373 
Devanagari conversions 338 
DSECT for data conversion 

template 380 
Farsi conversions 338 
Greek conversions 338 
Hebrew conversions 339 
IVP (initial program verification) 356 
Japanese conversions 340 
key templates 357 
Korean conversions 341 
Lao conversions 341 
Latin-1 conversions 342 
Latin-2 conversions 343 
Latin-5 conversions 344 
Latin-9 conversions 342 
nonstandard conversion 350 
resource definition 354, 373 
sequence of conversion 

processing 351 
Simplified Chinese conversions 344 
standard conversion 350 
Thai conversions 345 

data conversion (continued)
Traditional Chinese conversions 345 
types of conversion 329 
Urdu conversions 346 
Vietnamese conversions 346 

data streams
user data stream for IMS 

communication 178 
data tables 205 
DBCS (double-byte character set)

defining DBCS data fields 365 
included in standard conversion 329 
invalid and undefined characters 370 
mixed strings, SBCS/DBCS 366 
user-defined conversion tables 367, 

370 
DBDCCICS 148, 149 
deferred transmission

LUTYPE6.1 sessions 
(CICS-to-IMS) 271 

START NOCHECK requests 50 
DEFINE CONNECTION

APPC terminals 171 
indirect links 187 
LUTYPE6.1 links 168, 176 
MRO links 162 
NETNAME option 150 

DEFINE PROFILE 229 
DEFINE SESSIONS

APPC terminals 171 
indirect links 187 
LUTYPE6.1 links 169, 176 
MAXIMUM option

effect on CEMT commands for 
APPC 195 

MRO links 162 
DEFINE TERMINAL

APPC terminals 172 
remote VTAM terminals 213 
shippable terminal definitions 215 

DEFINE TRANSACTION
ACTION option 294 
asynchronous processing 211 
transaction routing 221 

DYNAMIC option 222 
PROFILE option 223 
PROGRAM option 223 
REMOTESYSTEM option 222 
TASKREQ option 223 
TRPROF option 223 
TWASIZE option 223 

WAIT option 294 
DEFINE TYPETERM

APPC terminals 172 
defining IPIC connections 150 
deletion of shipped terminal 

definitions 283 
deviations from APPC architecture 406 
DFH0IPCC 153, 156 
DFHCCNV, standard conversion 

program 350 
DFHCICSA

default profile for alternate facilities 
acquired by ALLOCATE 231 

DFHCICSE
default error profile for principal 

facilities 230 

 

418 CICS TS for z/OS 4.1: Intercommunication Guide



DFHCICSF
default profile for function 

shipping 231 
DFHCICSP

profile for principal facilities of 
CSPG 230 

DFHCICSR
default profile for transaction routing

used between user program and 
interregion link 231 

DFHCICSS
default profile for transaction routing

used between relay program and 
interregion link 231 

DFHCICST
default profile for principal 

facilities 230 
DFHCICSV

profile for principal facilities of CSNE, 
CSLG, CSRS 230 

DFHCNV
CICSplex management 356 

DFHCNV TYPE=DSECT macro 375 
DFHCNV, resource definition 

macro 355, 373 
coding examples 371 
coding hints 366 
macro types 355 
TYPE=ENTRY 360 
TYPE=FIELD 364 
TYPE=FINAL 366 
TYPE=INITIAL 358 
TYPE=IVP 357 
TYPE=KEY 363 
TYPE=SELECT 363 

DFHCNVDS, DSECT for field conversion 
records 380 

DFHDLPSB TYPE=ENTRY macro 206 
DFHDYP, dynamic routing program 67, 

99 
DFHTCT TYPE=REGION macro 218 
DFHTCT TYPE=REMOTE macro 217 
DFHTST TYPE=REMOTE macro 208 
DFHUCNV, user-replaceable conversion 

program
conversion template 379 
DFHCNV TYPE=DSECT macro 375 
DSECT for data conversion 

template 380 
DSECT for parameter list 375 
in conversion process 350, 353 
parameter list, DFHUCNV 375 
supplied version 381 

DFHUNVDS, DSECT for DFHUCNV 
parameter list 375 

DFHZATDY, autoinstall user 
program 171 

distributed program link (DPL)
application programming 247 
controlling with CICSPlex SM 101, 

209 
daisy-chaining requests 102 
defining remote server programs 208 
dynamic routing of requests

defining server programs 208 
eligibility for routing 100 
introduction 99 

distributed program link (DPL) 
(continued)

dynamic routing of requests 
(continued)

when the routing program is 
invoked 100 

examples 103 
exception conditions 248 
global user exits 99 
limitations of server programs 102 
local resource definitions 237 
mirror transaction abend 250 
overview 95 
queuing due to 102 
server programs 247 

resource definition 237 
static routing of requests

defining server programs 208 
described 96 

distributed routing
transaction definitions

for routing BTS activities 225 
using identical definitions 225 

distributed transaction processing (DTP)
application programming 257 
as API for APPC terminals 88 
CICS-to-IMS 264 
compared with asynchronous 

processing 45 
definition of remote resources 228 
overview 105 
PARTNER definition 228 

DL/I
defining remote PSBs 206 
function shipping 35 

DL/I model 232 
DSHIPIDL, system initialization 

parameter 284 
DSHIPINT, system initialization 

parameter 284 
DTRTRAN, system initialization 

parameter 225 
dual-purpose RDO definitions 224 
DYNAMIC option

on remote transaction definition 222 
dynamic routing

overview of the interface 59 
dynamic routing of DPL requests

controlling with CICSPlex SM 30 
defining server programs 208 
eligibility for routing 100 
in sysplex 30 
introduction 99 
when the routing program is 

invoked 100 
dynamic routing program, DFHDYP 67, 

99 
dynamic transaction routing

CICS Interdependency Analyzer 69 
controlling with CICSPlex SM 30, 69 
in CICSplex 30 
in sysplex 30 
information passed to routing 

program 68 
introduction 67 
invocation of routing program 67 

dynamic transaction routing (continued)
transaction definitions

using CRTX transaction 225 
using identical definitions 225 
using separate local and remote 

definitions 225 
using single definition in the 

TOR 225 
uses of a routing program 68 

E
EIB fields

LUTYPE6.1 sessions 
(CICS-to-IMS) 272 

exception conditions
DPL 248 
function shipping 244 

EXTRACT ATTACH command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265, 269 

F
field conversion records 379, 381 
file control

function shipping 34, 243 
FREE command

LUTYPE6.1 sessions 
(CICS-to-IMS) 265, 271 

freeing, connection status 198 
front-end transaction

defined 241 
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
FSSTAFF, system initialization 

parameter 76 
function shipping

application programming 243 
defining remote resources 205 

DL/I PSBs 206 
files 205 
temporary storage queues 207 
transient data destinations 207 

design considerations 34 
DL/I requests 35 
exception conditions 244 
file control 34, 243 
interval control 33 
main discussion 33 
mirror transaction 37 
mirror transaction abend 245 
queuing due to 36 
short-path transformer 40 
temporary storage 35, 244 
transient data 35, 244 

G
generic applid

relation to specific applid 187 
generic resources, VTAM

ending affinities 133 
installing 125 
intersysplex communications 128 
migration to 126 

 

Index 419



generic resources, VTAM (continued)
outbound LU6 connections 141 
overview 30 
requirements 121 
restrictions 140 
use with non-autoinstalled 

connections 141 
use with non-autoinstalled 

terminals 141 
global user exits

XALTENF 48, 73, 93 
XICTENF 48, 73, 93 
XISCONA 280 
XISQUE 280 
XPCREQ 99 
XPCREQC 99 
XZIQUE 280 

GRNAME, system initialization 
parameter 125 

I
IMS

comparison with CICS 257 
messages switches 260 
nonconversational transactions 260 
nonresponse mode transactions 260 

indirect links
resource definition 185 

indirect links for transaction routing
example 185 
overview 182 
when required 184 
with hard-coded terminals 184 
with shippable terminals 184 

indoubt period 291 
session failure during 291 

installation 115 
generic resources, VTAM 125 
multiregion operation 119 
VTAM generic resources 125 

intercommunication facilities
concepts 3 

intercommunications facility
concepts 11 

interregion communication (IRC) 25 
short-path transformer 40 

intersystem communication (ISC)
channel-to-channel 

communication 19 
concepts 3, 11 
connections between systems 18 
controlling queued session 

requests 279 
defined 3 
defining APPC links 167 
defining APPC modesets 169 
defining APPC terminals 171 
defining compatible APPC nodes 170 
defining compatible CICS and IMS 

nodes 177 
defining LUTYPE6.1 links 176 
facilities 5 
intrahost communication 19 
multiple-channel adapter 19 
over SNA 3, 11, 17, 118 
sessions 20 

intersystem communication (ISC) 
(continued)

transaction routing 65 
use of VTAM persistent sessions 174, 

319 
intersystem communication over SNA

concepts 3, 11, 17 
configuring 118 

intersystem queues
controlling queued session 

requests 36, 279 
intersystem sessions 20 
interval control

function shipping 33 
intrahost ISC 19 
invalid DBCS characters 370 
IP interconnectivity

concepts 11 
IPIC 11 

IP interconnectivity (IPIC)
concepts 3 
defined 3 
intercommunication facilities 12 

IPCONN
migrating APPC and MRO 

connections 153, 156 
IPIC

concepts 3 
IPIC connections

defining 150 
IPIC connectivity

migrating APPC and MRO 
connections 153, 156 

ISC
intercommunication facilities 18 

ISC over SNA
intercommunication facilities 18 

ISSUE SIGNAL command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
IVP (initial program verification), data 

conversion table 356 

L
LAST option 271 
levels of synchronization 21 
limited resources 22 

effects of 198 
links to remote systems 147 
local CICS region

applid 148 
naming 148 
sysid 149 

local CICS system
applid 149 

generic and specific 187 
sysidnt 149 

local names for remote resources 204 
local queuing of START requests 51 
local resources, defining

architected processes 232 
communication profiles 229 
for DPL 237 
intrapartition transient data 

queues 235 
long-running mirror tasks 39 

LU services manager
description 21 
SNASVCMG sessions 167 

LU services model 232 
LU-LU sessions 20 

contention 22 
primary and secondary LUs 22 

LUTYPE6.1
CICS-to-IMS application 

programming 257 
link definition 176 

LUTYPE6.2
link definition 167 

M
macro-level resource definition

remote DL/I PSBs 206 
remote files 205 
remote resources 203 
remote server programs 208 
remote temporary storage 

queues 207 
remote transactions 211 
remote transient data 

destinations 207 
mapped conversations 21 
mapping to APPC architecture 397 

control operator verbs 399 
deviations 406 

MAXIMUM option, DEFINE SESSIONS 
command

effect on CEMT commands for 
APPC 195 

MAXQTIME option, CONNECTION 
definition 36, 279 

MAXQTIME option, IPCONN 
definition 279 

methods of asynchronous processing 46 
migration

from single region operation to 
MRO 31 

transactions to transaction routing 
environment 253 

mirror transaction 37 
long-running mirror tasks 39 
resource definition for DPL 237 

mirror transaction abend 245, 250 
modegroup

definition of 22 
SNASVCMG 194 

models 232 
modename 167 
MODENAME 196 
modeset 169 

definition of 22, 167 
multiple-channel adapter 19 
multiple-mirror situation 39 
multiregion operation (MRO)

abend codes 395 
applications 29 

departmental separation 30 
multiprocessing 30 
program development 29 
reliable database access 30 
time sharing 29 
workload balancing 30 

 

420 CICS TS for z/OS 4.1: Intercommunication Guide



multiregion operation (MRO) (continued)
concepts 25 
controlling queued session 

requests 279 
conversion from single region 31 
cross-system MRO (XCF/MRO) 26 
defined 4 
defining compatible nodes 164 
defining MRO links 161 
facilities 5, 25 
in a CICSplex 30 
in a sysplex 30 
indirect links 182 
installation considerations 119 
interregion communication 25 
links, definition of 161 
long-running mirror tasks 39 
short-path transformer 40 
transaction routing 65 
use of VTAM persistent sessions 319 

MVS cross-memory services
specifying for interregion links 164 

MVS image
MRO links between images, in a 

sysplex 25, 26 

N
names

local CICS system 148 
remote systems 150 

NETNAME attribute of CONNECTION 
resource

default 150 
mapping to sysidnt 150 

NOCHECK option
of START command 49 

mandatory for local queuing 51 
NOQUEUE option

of ALLOCATE command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 

P
PARTNER definition, for DTP 228 
performance

controlling queued session 
requests 36, 51, 93, 102, 279 

deleting shipped terminal 
definitions 283, 285 

redundant shipped terminal 
definitions 283 

using CICSPlex SM 30 
using dynamic routing of DPL 

requests 30 
using dynamic transaction 

routing 30 
using static transaction routing 30 
using the MVS workload 

manager 30 
using VTAM generic resources 30 

persistent sessions, VTAM 168, 169, 174, 
319, 320 

PIP data
introduction 21 

PIP data (continued)
with CPI Communications 21 

primary logical unit (PLU) 22 
principal facility

default profiles 230 
defined 241 

PRINSYSID option of ASSIGN 
command 254 

PROFILE option of ALLOCATE 
command

LUTYPE6.1 sessions 
(CICS-to-IMS) 265 

on remote transaction definition 223 
profiles

CICS-supplied defaults 230 
for alternate facilities 229 
for principal facilities 230 
modifying the default definitions 231 
read time-out 230 
resource definition 229 

PROGRAM option
on remote transaction definition 223 

PROTECT option of START 
command 50 

pseudoconversational transactions
with transaction routing 254 

PSRECOVERY option
CONNECTION definition 175 

Q
queue model 232 
QUEUELIMIT option, CONNECTION 

definition 36, 279 
QUEUELIMIT option, IPCONN 

definition 279 
quiesce

connection processing 304 

R
RECEIVE command

LUTYPE6.1 sessions 
(CICS-to-IMS) 265 

record lengths for remote files 206 
recovery and restart 289 

dynamic transaction backout 294 
indoubt period 291 
syncpoint exchanges 290 
syncpoint flows 291 

RECOVOPTION option
SESSIONS definition 175 
TYPETERM definition 175 

redundant shipped terminal 
definitions 283 

relay transaction 90 
for transaction routing 65 

released, connection status 194, 198 
remote DL/I PSBs 206 
remote files

defining 205 
file names 206 
record lengths 206 

remote resources
defining 203 
naming 204 

remote server programs
defining 208 
program names 209 

remote temporary storage queues
defining 207 

remote terminals
definition using DFHTCT 

TYPE=REGION 218 
definition using DFHTCT 

TYPE=REMOTE 217 
terminal identifiers 219 

remote transactions
defining for asynchronous 

processing 210 
defining for transaction routing 221 

dynamic routing 225 
static routing 224 

security of routed transactions 223 
remote transient data destinations

defining 207 
REMOTENAME option in remote 

resource definitions 204 
REMOTESYSNET option

CONNECTION definition 184, 213 
TERMINAL definition 184, 212 

REMOTESYSTEM option
CONNECTION definition 184, 213 
TERMINAL definition 184, 212 
TRANSACTION definition 222 

resource definition
APPC links 167 
APPC modesets 169 
APPC terminals 171 
architected processes 232 
asynchronous processing 210 
CICS-to-IMS LUTYPE6.1 links 176 

defining multiple links 180 
data conversion 354, 373 
default profiles 230 
defining compatible APPC nodes 170 
defining compatible CICS and IMS 

nodes 177 
defining compatible MRO nodes 164 
defining the conversion table 355 
distributed transaction 

processing 228 
DPL 208, 237 

server programs 237 
function shipping 205 
indirect links 182 
links for multiregion operation 161 
links to remote systems 147 
local resources 229 
LUTYPE6.1 links 176 
LUTYPE6.2 links 167 
mirror transaction 237 
modifying architected process 

definitions 233 
modifying the default profiles 231 
overview 145 
profiles 229 
remote DL/I PSBs 206 
remote files 205 
remote partner 228 
remote resources 203 
remote server programs 208 

 

Index 421



resource definition (continued)
remote temporary storage 

queues 207 
remote terminals 212, 216 
remote transactions 210, 221 
remote transient data 

destinations 207 
resource definition online (RDO)

APPC links 167 
APPC terminals 171, 172 
connections to remote systems 147 
indirect links 187 
links for multiregion operation 162 
LUTYPE6.1 links 176 
LUTYPE6.2 links 167 
remote resources 203 
remote transactions 211 
remote VTAM terminals 212 
shippable terminal definitions 214 

RETRIEVE command
CICS-to-IMS communication 263 
WAIT option 52 

retrieving information shipped with 
START command 52 

routing BTS activities
transaction definitions 225 

routing transaction, CRTE 91 
automatic transaction initiation 92 
invoking CEMT 92 

RTIMOUT option
on communication profile 223 
PROFILE definition 230 

S
scheduler model 232 
secondary logical unit (SLU) 22 
security

of routed transactions 223 
RTIMOUT option 223 

selective deletion of shipped 
terminals 283 

SEND and RECEIVE, asynchronous 
processing 47 

CICS-to-IMS communication 264 
SEND command

LUTYPE6.1 sessions 
(CICS-to-IMS) 265 

session allocation
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
session balancing

using VTAM generic resources 121 
session failure

during indoubt period 291 
SESSION option of ALLOCATE 

command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
session queue management

overview 279 
using QUEUELIMIT option 279 
using XZIQUE global user exit 280 

SESSIONS definition
RECOVOPTION option 175 

shippable terminals
'terminal not known' condition 72 

shippable terminals (continued)
resource definition 215 
selective deletion of 283 
what is shipped 214 
with ATI 71 

shipped terminal definitions
deletion of

INQUIRE DELETSHIPPED 
command 285 

performance considerations 285 
SET DELETSHIPPED 

command 285 
system initialization 

parameters 284 
selective deletion mechanism 283 
timeout delete mechanism 284 

short-path transformer 40 
SNASVCMG sessions

generation by CICS 167 
purpose of 21 

specific applid
relation to generic applid 187 

SRVERCP 356 
START and RETRIEVE asynchronous 

processing 46, 47 
CICS-to-IMS communication 259 

START command
CICS-to-IMS communication 262 
NOCHECK option 49 

for local queuing 51 
START NOCHECK command

deferred sending 50 
for local queuing 51 

START PROTECT command 50 
static transaction routing

transaction definitions
using dual-purpose 

definitions 224 
using separate local and remote 

definitions 224 
surrogate TCTTE 254 
switched lines

cost efficiency 22 
sympathy sickness

reducing 279 
synchronization levels 21, 111 

CPI Communications 21 
syncpoint 110, 290, 394 
SYSDEF value for DFHCNV and 

SRVERCP 356 
sysid

of local CICS region 149 
relation to applid 149 

SYSID keyword of ALLOCATE command
LUTYPE6.1 sessions 

(CICS-to-IMS) 265 
SYSID value

default 149 
of local CICS region 149 

sysidnt
of local CICS system 149 
of remote systems 150 
relation to applid 149 

SYSIDNT value
default 149 
local CICS system 149, 150 
mapping to NETNAME 150 

SYSIDNT value (continued)
of local CICS system 149 
of remote systems 150 

sysplex, MVS
cross-system coupling facility (XCF)

for MRO links across MVS 
images 25, 26 

dynamic transaction routing 30 
performance of

using CICSPlex SM 30 
using MVS workload manager 30 
using VTAM generic 

resources 30, 121 
system initialization parameters

APPLID 148, 149, 187 
DSHIPIDL 284 
DSHIPINT 284 
DTRTRAN 225 
for deletion of shipped terminals 284 
for VTAM generic resources 125 
FSSTAFF 76 
GRNAME 125 
SYSIDNT 149, 150 

system message model 232 

T
TASKREQ option

on remote transaction definition 223 
TCP/IP (Transport Control 

Protocol/Internet Protocol ) 3, 11 
TCP/IP management and control

overview 189 
TCTTE, surrogate 254 
temporary storage

function shipping 35, 244 
terminal aliases 220 
TERMINAL definition

REMOTENAME option 220 
REMOTESYSNET option 212 
REMOTESYSTEM option 212 

terminal-not-known condition during 
ATI 72 

terminal-owning region (TOR) 65 
several, in a CICSplex

as members of a generic resource 
group 121 

balancing sessions between 121 
timeout delete mechanism, for shipped 

terminals 284 
TOR (terminal-owning region) 65 

several, in a CICSplex
as members of a generic resource 

group 121 
balancing sessions between 121 

trademarks 410 
TRANSACTION definition

ACTION attribute 295 
WAIT attribute 294 
WAITTIME attribute 294 

transaction routing
APPC terminals 87 
application programming 253 
automatic initiate descriptor 

(AID) 70 
automatic transaction initiation 71 
basic mapping support 91, 253 

 

422 CICS TS for z/OS 4.1: Intercommunication Guide



transaction routing (continued)
CICS Interdependency Analyzer 69 
defining remote resources

dynamically-routed 
transactions 225 

statically-routed transactions 224 
terminals 212, 216 
transactions 221 

deletion of shipped terminal 
definitions 283 

indirect links for
example 185 
how defined 187 
overview 182 
when required 184 
with hard-coded terminals 184 
with shippable terminals 184 

initiated by ATI request 69 
overview 65 
pseudoconversational 

transactions 254 
queuing due to 93 
relay program 90 
relay transaction 65 
routing transaction, CRTE 91 
security considerations 223 
system programming 

considerations 92 
terminal shipping 71 
terminal-initiated

dynamic 67 
information passed to dynamic 

routing program 68 
invocation of dynamic routing 

program 67 
static 67 
uses of a dynamic routing 

program 68 
use of ASSIGN command in 

AOR 254 
transient data

function shipping 35, 244 
Transport Control Protocol/Internet 

Protocol (TCP/IP) 3, 11 
TRPROF option

on remote transaction definition 223 
on routing transaction (CRTE) 91 

TWASIZE option
on remote transaction definition 223 

type 3 SVC routine
and CICS applid 148, 149 
specifying for interregion links 164 
used for interregion 

communication 25 
TYPETERM definition

RECOVOPTION option 175 

U
undefined DBCS characters 370 
user-replaceable programs

DFHDYP, dynamic routing 
program 67 

USERID option of ASSIGN 
command 254 

V
VLVB format 258 
VTAM

APPN network node 121 
ending affinities 133 
generic resources

installing 125 
intersysplex communications 128 
migration to 126 
outbound LU6 connections 141 
overview 30 
requirements 121 
restrictions 140 
use with non-autoinstalled 

connections 141 
use with non-autoinstalled 

terminals 141 
limited resources 22 
LOGMODE entries 22, 167 
modegroups 22 
persistent sessions

comparison with XRF 319 
effects on recovery and 

restart 320 
link definitions 174 
on MRO and ISC links 319 

W
WAIT attribute

TRANSACTION definition 294 
WAIT command

LUTYPE6.1 sessions 
(CICS-to-IMS) 265 

WAIT option 294 
of RETRIEVE command 52 

WAITTIME attribute
TRANSACTION definition 294 

workload balancing
using CICSPlex SM 30 
using dynamic routing of DPL 

requests 30 
using dynamic transaction 

routing 30 
using MVS workload manager 30 
using VTAM generic resources 30, 

121 

X
XALTENF, global user exit 48, 73, 93, 

215 
XCF (cross-system coupling facility)

overview 26 
XCF/MRO (cross-system MRO)

overview 26 
XICTENF, global user exit 48, 73, 93, 215 
XISCONA, global user exit

for controlling intersystem 
queuing 36 

XPCREQ, global user exit 99 
XPCREQC, global user exit 99 
XRF (extended recovery facility) 317 

applid, generic and specific 187 
comparison with persistent 

sessions 319 

XZIQUE, global user exit
for controlling intersystem 

queuing 36

 

Index 423



424 CICS TS for z/OS 4.1: Intercommunication Guide



Readers’ Comments — We'd Like to Hear from You 

CICS Transaction Server for z/OS
Version 4 Release 1 
Intercommunication Guide 

 Publication No. SC34-7018-02 

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, 
organization, subject matter, or completeness of this book. The comments you send should pertain to only the 
information in this manual or product and the way in which the information is presented. 

For technical questions and information about products and prices, please contact your IBM branch office, your 
IBM business partner, or your authorized remarketer. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any 
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use 
the personal information that you supply to contact you about the issues that you state on this form. 

Comments: 

 Thank you for your support. 

Submit your comments using one of these channels: 
v   Send your comments to the address on the reverse side of this form. 
v   Send a fax to the following number: +44 1962 816151 
v   Send your comments via email to: idrcf@uk.ibm.com 

If you would like a response from IBM, please fill in the following information: 

 
Name
 

Address 

Company or Organization
 

Phone No. Email address



Readers’ Comments — We'd Like to Hear from You
 SC34-7018-02

SC34-7018-02

���� 
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited 
User Technologies Department (MP095) 
Hursley Park 
Winchester 
Hampshire 
United Kingdom 
 SO21 2JN 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





����

  

  
 

  

SC34-7018-02 

              

 


	Contents
	Preface
	What this book is about
	What is not covered by this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	How this book is organized
	Terminology

	Changes in CICS Transaction Server for z/OS, Version 4 Release 1
	Part 1. Intercommunication concepts and facilities
	Chapter 1. Introduction to CICS intercommunication
	Intercommunication methods
	Communication between systems
	Multiregion operation

	Intercommunication facilities
	Function shipping
	Asynchronous processing
	Transaction routing
	Distributed program link (DPL)
	Distributed transaction processing (DTP)

	Using CICS intercommunication
	Connecting regional centers
	Connecting divisions within an organization


	Chapter 2. ISC and IPIC intercommunications facilities
	Intercommunication using IP interconnectivity
	Intercommunication facilities available using IPIC
	Association data and origin data
	Examples of origin data creation


	Intersystem communication over SNA
	Intercommunication facilities available using ISC
	Connections between subsystems
	Intersystem sessions
	LUTYPE6.1
	LUTYPE6.2 (APPC)

	Establishing intersystem sessions


	Chapter 3. Multiregion operation
	Intercommunication facilities available using MRO
	Cross-system multiregion operation (XCF/MRO)
	Benefits of XCF/MRO

	Applications of multiregion operation
	Program development
	Time-sharing
	Reliable database access
	Departmental separation
	Multiprocessor performance
	Workload balancing in a sysplex
	Virtual storage constraint relief

	Conversion from a single-region system

	Chapter 4. CICS function shipping
	Overview of function shipping
	Design considerations for Function Shipping
	File control
	DL/I
	Temporary storage
	Transient data
	Intersystem queuing

	The mirror transaction and transformer program
	ISC function shipping
	MRO function shipping
	Long-running mirror tasks
	The short-path transformer

	Handling errors and failure of the mirror transaction

	Function shipping examples

	Chapter 5. Asynchronous processing
	Overview of asynchronous processing
	Asynchronous processing methods
	Asynchronous processing using START and RETRIEVE commands
	Starting and canceling remote transactions
	Passing information with the START command
	Passing a sysid or applid with the START command

	Improving performance of intersystem START requests
	Including start request delivery in a unit of work
	Deferred transmission of START requests with NOCHECK option for ISC links
	Intersystem queuing
	Local queuing of START commands

	Data retrieval by a started transaction
	Terminal acquisition by a remotely-initiated CICS transaction
	Starting transactions with ISC or MRO sessions


	System programming considerations
	Asynchronous processing examples

	Chapter 6. Introduction to CICS dynamic routing
	What is dynamic routing?
	Two routing models
	The “hub” model
	Advantage of the “hub” model
	Disadvantages of the “hub” model

	The distributed model
	Advantage of the distributed model
	Disadvantages of the distributed model


	Two routing programs

	Chapter 7. CICS transaction routing
	Overview of transaction routing
	Initiating transaction routing

	Terminal-initiated transaction routing
	Static transaction routing
	Dynamic transaction routing
	When your routing program is invoked
	Information passed to your routing program
	Using your dynamic routing program
	The CICS Interdependency Analyzer
	Using CICSPlex SM


	Traditional routing of transactions started by ATI
	Shipping terminals for automatic transaction initiation
	Terminal-not-known condition
	Shipping terminals for ATI from multiple TORs

	ATI and generic resources

	Routing transactions invoked by START commands
	Advantages of the enhanced method
	How to route transactions started by terminal-related START commands
	START commands issued in an AOR
	START commands issued in a TOR

	Non-terminal-related START commands
	Static routing
	Dynamic routing


	Allocation of remote APPC connections
	Transaction routing with APPC devices
	Allocating an alternate facility
	The system as a terminal

	The relay program
	Basic mapping support (BMS)
	BMS message routing to remote terminals and operators

	Using the routing transaction, CRTE
	System programming for transaction routing
	Intersystem queuing


	Chapter 8. CICS distributed program link
	Overview of DPL
	Statically routing DPL requests
	Using the mirror transaction
	Using global user exits to redirect DPL requests

	Dynamically routing DPL requests
	Which requests can be dynamically routed?
	When the dynamic routing program is invoked
	Using CICSPlex SM to route requests

	Daisy-chaining of DPL requests
	Limitations of DPL server programs
	Intersystem queuing
	Examples of DPL

	Chapter 9. Distributed transaction processing
	Overview of DTP
	Advantages over function shipping and transaction routing
	Why distributed transaction processing?
	What is a conversation and what makes it necessary?
	Conversation initiation and transaction hierarchy
	Dialog between two transactions
	Control flows and brackets
	Conversation state and error detection
	Synchronization
	Examples of use
	Taking syncpoints
	The three sync levels


	MRO or APPC for DTP?
	APPC mapped or basic?
	EXEC CICS or CPI Communications?

	Part 2. Installing and configuring intercommunication support
	Chapter 10. Configuring intersystem communication
	Configuring support for communicating over a TCP/IP network
	Configuring support for ISC over SNA

	Chapter 11. Configuring multiregion operation
	Providing support for MRO
	Steps after configuring MRO

	Chapter 12. Configuring VTAM generic resources
	Prerequisites for VTAM generic resources
	Planning your CICSplex to use VTAM generic resources
	Naming the CICS regions
	Generic resources and XRF


	Defining connections in a generic resource environment
	Defining connections
	Defining connections between GR members and non-GR members
	Defining connections between members within a generic resource
	Defining connections between CICS TS for z/OS generic resources


	Generating VTAM generic resource support
	Migrating a TOR to a generic resource
	Recommended methods
	No LU6 connections
	LU6 connections


	Removing a TOR from a generic resource
	Moving a TOR to a different generic resource
	Setting up inter-sysplex communications between generic resources
	Establishing connections between CICS TS for z/OS generic resources
	Example


	Ending affinities
	When should you end affinities?
	Writing a batch program to end affinities
	Program input
	Program output
	Processing
	JCL for submitting the ENDAFFINITY program


	Using ATI with generic resources
	Using the ISSUE PASS command
	Rules checklist
	Dealing with special cases
	Non-autoinstalled terminals and connections
	Outbound LU6 connections
	Using a “hub”



	Part 3. Defining intercommunication resources
	Chapter 13. How to define connections to remote systems
	Introduction to connection definition
	The local CICS region name
	The applid of the local CICS system
	The sysidnt of the local CICS system


	Identifying remote systems
	Defining IP interconnectivity (IPIC) connections
	Migrating APPC and MRO connections to IPIC
	The DFH0IPCC migration utility
	Equivalent attributes on IPCONN definitions


	Defining links for multiregion operation
	Defining an MRO link
	Choosing the access method for MRO
	Defining compatible MRO nodes

	Defining links for use by the external CICS interface
	Installing MRO and EXCI link definitions

	Defining APPC connections
	Defining the remote APPC system
	Defining groups of APPC sessions
	Defining compatible CICS APPC nodes
	Automatic installation of APPC links
	Defining single-session APPC terminals
	Defining an APPC terminal – method 1
	Defining an APPC terminal – method 2

	The AUTOCONNECT option
	The AUTOCONNECT option of DEFINE CONNECTION
	The AUTOCONNECT option of DEFINE SESSIONS

	Using VTAM persistent sessions on APPC links
	The PSRECOVERY option of DEFINE CONNECTION
	The RECOVOPTION option of DEFINE SESSIONS and DEFINE TYPETERM


	Defining logical unit type 6.1 links
	Defining CICS-to-IMS LUTYPE6.1 links
	Defining compatible CICS and IMS nodes
	System names
	Number of sessions
	Session names
	Other session parameters

	Defining multiple links to an IMS system

	Defining indirect links for transaction routing
	Defining indirect links in CICS Transaction Server for z/OS
	Resource definition for transaction routing using indirect links
	Defining the direct links
	Defining the indirect links
	Defining the terminal
	Defining the transaction


	Generic and specific applids for XRF

	Chapter 14. TCP/IP management and control
	Chapter 15. Managing APPC connections
	General information about managing APPC links
	Acquiring a connection
	Connection status during the acquire process
	Effects of the AUTOCONNECT option
	Binding contention-loser sessions

	Effects of the MAXIMUM option

	Controlling sessions with the SET MODENAME commands
	Command scope and restrictions

	Releasing the connection
	Connection status during the release process
	The effects of limited resources
	Making the connection unavailable
	Allocating from APPC mode groups with no available sessions
	Diagnosing and correcting error conditions


	Summary of APPC link management
	Command scope and restrictions


	Chapter 16. Defining remote resources
	Which remote resources need to be defined?
	A note on daisy-chaining

	Local and remote names for resources
	Defining remote resources for function shipping
	Defining remote files
	The name of the remote system
	File names
	Record lengths
	Sharing file definitions

	Defining remote DL/I PSBs
	Defining remote transient data destinations
	Defining remote temporary storage queues

	Defining remote resources for DPL
	Defining remote server programs
	The name of the remote system
	Program names
	Transaction names

	When definitions of remote server programs aren't required

	Defining remote resources for asynchronous processing
	Defining remote transactions
	Restriction on the REMOTENAME option


	Defining remote resources for transaction routing
	Defining terminals for transaction routing
	Defining remote VTAM terminals
	Defining remote APPC connections
	How to share terminal and connection definitions
	Shipping terminal and connection definitions
	Defining remote non-VTAM terminals
	Local and remote names for terminals

	Defining transactions for transaction routing
	Static transaction routing
	Dynamic transaction routing


	Defining remote resources for DTP

	Chapter 17. Defining local resources
	Defining communication profiles
	Communication profiles for principal facilities
	Default profiles
	Modifying the default profiles

	Architected processes
	Process names
	Modifying the architected process definitions
	Interregion function shipping


	Selecting required resource definitions for installation
	Defining intrapartition transient data queues
	Transactions
	Principal facilities
	Local terminals
	Remote terminals
	Local sessions and APPC devices
	Remote APPC sessions and devices


	Defining local resources for DPL
	Mirror transactions
	Server programs


	Part 4. Application programming in an intersystem environment
	Chapter 18. Application programming overview
	Terminology
	Problem determination

	Chapter 19. Application programming for CICS function shipping
	Introduction to programming for function shipping
	File control
	DL/I
	Temporary storage
	Transient data
	Function shipping exceptional conditions
	Remote system not available
	Invalid request
	Mirror transaction abend


	Chapter 20. Application programming for CICS DPL
	Introduction to DPL programming
	The client program
	Failure of the server program

	The server program
	Permitted commands
	Syncpoints

	DPL exceptional conditions
	Remote system not available
	Server's work backed out
	Multiple links to the same server region
	Mirror transaction abend
	Multiple updates to a recoverable resource by the same distributed UOW


	Chapter 21. Application programming for asynchronous processing
	Starting a transaction on a remote system
	Exceptional conditions for the START command
	Retrieving data associated with a remotely-issued start request

	Chapter 22. Application programming for CICS transaction routing
	Application programming restrictions
	Basic mapping support
	Pseudoconversational transactions
	The terminal


	Reviewing values returned by the EXEC CICS ASSIGN command in the application-owning region

	Chapter 23. CICS-to-IMS applications
	Designing CICS-to-IMS ISC applications
	Data formats
	Variable-length variable-blocked
	Chain of RUs

	Forms of intersystem communication with IMS

	CICS-to-IMS applications—asynchronous processing
	The START and RETRIEVE interface
	CICS front end
	IMS front end
	The START command
	The RETRIEVE command

	The asynchronous SEND and RECEIVE interface

	CICS-to-IMS applications—DTP
	CICS commands for CICS-to-IMS sessions
	Considerations for the front-end transaction
	Session allocation
	The session identifier
	Automatic transaction initiation

	Attaching the remote transaction
	Building your own attach header

	Considerations for the back-end transaction
	Acquiring session-related information
	Initial state of back-end transaction

	The conversation
	Deferred transmission
	Using the LAST option
	The LAST option and syncpoint flows

	Freeing the session
	The EXEC interface block (EIB)
	Conversation identifier fields
	Procedural fields
	Information fields

	Command sequences for CICS-to-IMS sessions
	Conversation states
	Initial states

	State diagrams
	Other tests



	Part 5. Performance in an intersystem environment
	Chapter 24. Intersystem session queue management
	Overview of session queue management
	Managing allocate queues
	Using resource definitions to manage your queues
	Using the NOQUEUE option
	Using the XISQUE and XZIQUE global user exits


	Chapter 25. Efficient deletion of shipped terminal definitions
	Overview of how shipped terminals are deleted
	Selective deletion
	The timeout delete mechanism

	Implementing timeout delete
	Tuning the performance of timeout delete
	DSHIPIDL
	DSHIPINT


	Part 6. Recovery and restart in an intersystem environment
	Chapter 26. Recovery and restart in interconnected systems
	Terminology
	Syncpoint exchanges
	Syncpoint flows

	Recovery functions and interfaces
	Recovery functions
	Recovery interfaces
	The indoubt attributes of the transaction definition
	INQUIRE commands
	SET {CONNECTION | IPCONN} command


	Initial and cold starts
	Deciding when a cold start is possible
	The exchange lognames process
	Considerations for APPC connections


	Managing connection definitions
	MRO and IPIC connections to CICS TS for z/OS systems
	APPC parallel-session connections to CICS TS for z/OS systems
	APPC connections to and from VTAM generic resources
	Managing connection definitions


	Connections that do not fully support shunting
	LU6.1 connections
	APPC connections to non-CICS TS for z/OS systems
	APPC single-session connections

	APPC connection quiesce processing
	Problem determination
	Messages that report CICS recovery actions
	Problem determination examples
	Resolving an indoubt failure
	Resolving a resynchronization failure



	Chapter 27. Intercommunication and XRF
	MRO sessions
	LUTYPE6.1 sessions
	Single-session APPC devices
	Parallel APPC sessions
	Effect on application programs

	Chapter 28. Intercommunication and VTAM persistent sessions
	Comparison of persistent sessions support and XRF
	Interconnected CICS environment, recovery and restart

	Part 7. Data conversion in an intersystem environment
	Chapter 29. Where is data converted?
	Function shipping and DPL
	Distributed transaction processing
	Transaction routing

	Chapter 30. Avoiding data conversion
	Chapter 31. Types of conversion
	Chapter 32. Character data
	Chapter 33. Binary data
	Chapter 34. CICS-supported conversions
	Arabic
	Baltic Rim
	Cyrillic
	Devanagari
	Farsi
	Greek
	Hebrew
	Japanese
	Korean
	Lao
	Latin-1 and Latin-9
	Latin-2
	Latin-5
	Simplified Chinese
	Thai
	Traditional Chinese
	Urdu
	Vietnamese
	Unicode data

	Chapter 35. The conversion process
	Components
	Process
	Standard and nonstandard conversion
	CICS-only conversion
	User/CICS conversion
	User-only conversion

	Sequence of conversion processing

	Chapter 36. Resource definition to enable data conversion
	Chapter 37. Defining the conversion table
	DFHCNV macro types
	Conversion and key templates
	Defaults for client and server code pages
	Conversion table for initial program verification (IVP)

	DFHCNV TYPE=INITIAL
	DFHCNV TYPE=ENTRY
	DFHCNV TYPE=KEY
	DFHCNV TYPE=SELECT
	DFHCNV TYPE=FIELD
	DFHCNV TYPE=FINAL
	Hints on coding the macros

	Chapter 38. User-defined conversion tables
	Invalid and undefined DBCS characters

	Chapter 39. Example macros
	Chapter 40. Assembling and link-editing the conversion programs
	Chapter 41. The user-replaceable conversion program
	User-named conversion programs
	Input to DFHUCNV
	Parameter list (DFHUVNDS)
	Conversion and key templates
	Field conversion records
	EQUATEs in DFHCNVDS
	DFHCNVDS, DSECT for field conversion records


	Supplied user-replaceable conversion program
	User-replaceable conversion program


	Part 8. Appendixes
	Appendix A. Intercommunication rules and restrictions checklist
	Transaction routing
	Dynamic routing of DPL requests
	Automatic transaction initiation
	Basic mapping support
	Acquiring LUTYPE6.1 sessions
	Syncpointing
	Local and remote names
	Master terminal transaction
	Installation and operations
	Resource definition
	Customization
	MRO abend codes

	Appendix B. CICS mapping to the APPC architecture
	Supported option sets
	CICS implementation of control operator verbs
	Control operator verbs
	Return codes for control operator verbs

	CICS deviations from APPC architecture
	APPC transaction routing deviations from APPC architecture


	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications
	Other IBM publications

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

